in

Interaction exposure effects of multiple disturbances: plant population resilience to ungulate grazing is reduced by creation of canopy gaps

  • 1.

    Peters, D. P. C. et al. Cross-scale interactions, nonlinearities, and forecasting catastrophic events. Proc. Natl. Acad. Sci. USA 101, 15130–15135 (2004).

  • 2.

    Lindenmayer, D. B., Likens, G. E., Krebs, C. J. & Hobbs, R. J. Improved probability of detection of ecological “surprises”. Proc. Natl. Acad. Sci. 107, 21957–21962 (2010).

  • 3.

    Turner, M. G. Disturbance and landscape dynamics in a changing world 1. Ecology 91, 2833–2849 (2010).

  • 4.

    Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. & Ewers, R. M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496 (2007).

  • 5.

    Buma, B. Disturbance interactions: characterization, prediction, and the potential for cascading effects. Ecosphere 6, 1–15 (2015).

    • Article
    • Google Scholar
  • 6.

    Paine, R. T., Tegner, M. J. & Johnson, E. A. Compounded Perturbations Yield Ecological Surprises. Ecosystems 1, 535–545 (1998).

    • Article
    • Google Scholar
  • 7.

    Buma, B. & Wessman, C. A. Disturbance interactions can impact resilience mechanisms of forests. Ecosphere 2, 64 (2011).

    • Article
    • Google Scholar
  • 8.

    Doherty, T. S., Dickman, C. R., Nimmo, D. G. & Ritchie, E. G. Multiple threats, or multiplying the threats? Interactions between invasive predators and other ecological disturbances. Biol. Conserv. 190, 60–68 (2015).

    • Article
    • Google Scholar
  • 9.

    Foster, C. N., Sato, C. F., Lindenmayer, D. B. & Barton, P. S. Integrating theory into disturbance interaction experiments to better inform ecosystem management. Glob. Chang. Biol. 22, 1325–1335 (2016).

  • 10.

    Frelich, L. E. & Reich, P. B. Neighborhood effects, disturbance severity, and community stability in forests. Ecosystems 2, 151–166 (1999).

    • Article
    • Google Scholar
  • 11.

    Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).

  • 12.

    Darling, E. S. & Côté, I. M. Quantifying the evidence for ecological synergies. Ecol. Lett. 11, 1278–1286 (2008).

  • 13.

    Cannon, J. B., Henderson, S. K., Bailey, M. H. & Peterson, C. J. Interactions between wind and fire disturbance in forests: Competing amplifying and buffering effects. For. Ecol. Manage. 436, 117–128 (2019).

    • Article
    • Google Scholar
  • 14.

    Krueger, L. M. & Peterson, C. J. Effects of White-tailed Deer on Tsuga canadensis Regeneration: Evidence of Microsites as Refugia from Browsing. Am. Midl. Nat. 156, 353–362 (2006).

    • Article
    • Google Scholar
  • 15.

    Rilov, G., Benayahu, Y. & Gasith, A. Prolonged lag in population outbreak of an invasive mussel: A shifting-habitat model. Biol. Invasions 6, 347–364 (2004).

    • Article
    • Google Scholar
  • 16.

    Kulakowski, D. V. T. T. Effect of prior disturbance on the extent and severity of wildfire in Colorado subalpine forests. Ecology 88, 759–769 (2007).

  • 17.

    Harvey, B. J., Donato, D. C., Romme, W. H. & Turner, M. G. Fire severity and tree regeneration following bark beetle outbreaks: The role of outbreak stage and burning conditions. Ecol. Appl. 24, 1608–1625 (2014).

  • 18.

    Platt, W. J., Beckage, B., Doren, R. F. & Slater, H. H. Interactions of large-scale disturbances: Prior fire regimes and hurricane mortality of savanna pines. Ecology 83, 1566–1572 (2002).

    • Article
    • Google Scholar
  • 19.

    Winsome, T., Epstein, L., Hendrix, P. F. & Horwath, W. R. Competitive interactions between native and exotic earthworm species as influenced by habitat quality in a California grassland. Appl. Soil Ecol. 32, 38–53 (2006).

    • Article
    • Google Scholar
  • 20.

    Kulakowski, D., Matthews, C., Jarvis, D. & Veblen, T. T. Compounded disturbances in sub-alpine forests in western Colorado favour future dominance by quaking aspen (Populus tremuloides). J. Veg. Sci. 24, 168–176 (2013).

    • Article
    • Google Scholar
  • 21.

    Cannon, J. B., Peterson, C. J., O’Brien, J. J. & Brewer, J. S. A review and classification of interactions between forest disturbance from wind and fire. For. Ecol. Manage. 406, 381–390 (2017).

    • Article
    • Google Scholar
  • 22.

    Miller, A. M., McArthur, C. & Smethurst, P. J. Effects of within-patch characteristics on the vulnerability of a plant to herbivory. Oikos 116, 41–52 (2007).

    • Article
    • Google Scholar
  • 23.

    González, V. T., Bråthen, K. A., Ravolainen, V. T., Iversen, M. & Hagen, S. B. Large-scale grazing history effects on Arctic-alpine germinable seed banks. Plant Ecol. 207, 321–331 (2010).

    • Article
    • Google Scholar
  • 24.

    Milberg, P. Soil seed bank after eighteen years of succession from grassland to forest. Oikos 72, 3–13 (1995).

    • Article
    • Google Scholar
  • 25.

    DiTommaso, A., Morris, S. H., Parker, J. D., Cone, C. L. & Agrawal, A. A. Deer browsing delays succession by altering aboveground vegetation and belowground seed banks. PLoS One 9, e91155 (2014).

  • 26.

    Gioria, M. & Osborne, B. Similarities in the impact of three large invasive plant species on soil seed bank communities. Biol. Invasions 12, 1671–1683 (2010).

    • Article
    • Google Scholar
  • 27.

    Gioria, M. & Osborne, B. Assessing the impact of plant invasions on soil seed bank communities: Use of univariate and multivariate statistical approaches. J. Veg. Sci. 20, 547–556 (2009).

    • Article
    • Google Scholar
  • 28.

    Bazzaz, F. A. Plants in changing environments. (1996).

  • 29.

    Mladenoff, D. J. Dynamics of soil seed banks, vegetation, and nitrogen availability in treefall gaps. Can. J. Bot. 68, 2714–2721 (1990).

    • Article
    • Google Scholar
  • 30.

    Beatty, S. W. Influence of Microtopography and Canopy Species on Spatial Patterns of Forest Understory Plants. Ecology 65, 1406–1419 (1984).

    • Article
    • Google Scholar
  • 31.

    Buma, B., Poore, R. E. & Wessman, C. A. Disturbances, Their Interactions, and Cumulative Effects on Carbon and Charcoal Stocks in a Forested Ecosystem. Ecosystems 17, 947–959 (2014).

    • Article
    • Google Scholar
  • 32.

    Enright, N. J., Fontaine, J. B., Lamont, B. B., Miller, B. P. & Westcott, V. C. Resistance and resilience to changing climate and fire regime depend on plant functional traits. J. Ecol. 102, 1572–1581 (2014).

    • Article
    • Google Scholar
  • 33.

    Shinoda, Y. & Akasaka, M. Species turnover differentiates diversity–disturbance relationships between aboveground vegetation and soil seedbank. Plant Ecol. 220, 595–603 (2019).

    • Article
    • Google Scholar
  • 34.

    Lemieux, N., Maynard, B. K. & Johnson, W. A. A regional survey of deer damage throughout Northeast nurseries and orchards. J. Environ. Hortic. 18, 1–4 (2000).

    • Google Scholar
  • 35.

    Toräng, P., Ehrlén, J. & Ågren, J. Linking environmental and demographic data to predict future population viability of a perennial herb. Oecologia 163, 99–109 (2010).

  • 36.

    Sletvold, N. & Rydgren, K. Population dynamics in Digitalis purpurea: The interaction of disturbance and seed bank dynamics. J. Ecol. 95, 1346–1359 (2007).

    • Article
    • Google Scholar
  • 37.

    Tamura, A. Potential of soil seed banks in the ecological restoration of overgrazed floor vegetation in a cool-temperate old-growth damp forest in eastern Japan. J. For. Res. 21, 43–56 (2016).

  • 38.

    Royo, A. A., Peterson, C. J., Stanovick, J. S. & Carson, W. P. Evaluating the ecological impacts of salvage logging: Can natural and anthropogenic disturbances promote coexistence? Ecology 97, 1566–1582 (2016).

  • 39.

    Reyer, C. P. O. et al. Forest resilience and tipping points at different spatio-temporal scales: Approaches and challenges. J. Ecol. 103, 5–15 (2015).

  • 40.

    Vandvik, V., Klanderud, K., Meineri, E., Måren, I. E. & Töpper, J. Seed banks are biodiversity reservoirs: Species-area relationships above versus below ground. Oikos 125, 218–228 (2016).

    • Article
    • Google Scholar
  • 41.

    Côté, S. D., Rooney, T. P., Tremblay, J.-P., Dussault, C. & Waller, D. M. Ecological Impacts of Deer Overabundance. Annu. Rev. Ecol. Evol. Syst. 35, 113–147 (2004).

    • Article
    • Google Scholar
  • 42.

    Dale, V. H., Joyce, L. A., McNulty, S. & Neilson, R. P. The interplay between climate change, forests, and disturbances. Sci. Total Environ. 262, 201–204 (2000).

  • 43.

    Borczyk, B. The effects of flood on an isolated population of Sand Lizards (Lacerta agilis L.) in Wroclaw (SW Poland). Herpetol. Bull., 28–30 (2001).

  • 44.

    Lytle, D. A., Olden, J. D. & McMullen, L. E. Drought-Escape Behaviors Of Aquatic Insects May Be Adaptations To Highly Variable Flow Regimes Characteristic Of Desert Rivers. Southwest. Nat. 53, 399–402 (2008).

    • Article
    • Google Scholar
  • 45.

    Hopfensperger, K. N. A review of similarity between seed bank and standing vegetation across ecosystems. Oikos 116, 1438–1448 (2007).

    • Article
    • Google Scholar
  • 46.

    Ma, M. et al. Seed banks trigger ecological resilience in subalpine meadows abandoned after arable farming on the Tibetan Plateau. Ecol. Appl. 29, 1–13 (2019).

    • Article
    • Google Scholar
  • 47.

    Walker, B., Kinzig, A. & Langridge, J. Plant Attribute Diversity, Resilience, and Ecosystem Function: The Nature and Significance of Dominant and Minor Species. Ecosystems 2, 95–113 (1999).

    • Article
    • Google Scholar
  • 48.

    Halpern, C. B. Early successional pathways and the resistance and resilience of forest communities. Ecology 69, 1703–1715 (1988).

    • Article
    • Google Scholar
  • 49.

    Takahashi, H. & Kaji, K. Fallen leaves and unpalatable plants as alternative foods for sika deer under food limitation. Ecol. Res. 16, 257–262 (2001).

    • Article
    • Google Scholar
  • 50.

    Sukeno, M. & Miyaki, M. Impacts of an excessive sika deer population on vascular flora on Nakanoshima Islands, Toya Lake, Hokkaido, Japan. Wildl. Conserv. Japan 11, 43–66 (2007).

    • Google Scholar
  • 51.

    Mobaek, R., Mysterud, A., Egil Loe, L., Holand, Ø. & Austrheim, G. Density dependent and temporal variability in habitat selection by a large herbivore; an experimental approach. Oikos 118, 209–218 (2009).

    • Article
    • Google Scholar
  • 52.

    Morimoto, J. et al. Comparison of vulnerability to catastrophic wind between Abies plantation forests and natural mixed forests in northern Japan. Forestry 92, 436–443 (2019).

    • Article
    • Google Scholar
  • 53.

    Takano, K. T. et al. Projection of impacts of climate change on windthrows and evaluation of potential adaptation measures in forest management: A case study from empirical modelling of windthrows in Hokkaido, Japan, by Typhoon Songda (2004). Hydrol. Res. Lett. 10, 132–138 (2016).

  • 54.

    Arriaga, L. & Mercado, C. Seed bank dynamics and tree-fall gaps in a northwestern Mexican Quercus-Pinus forest. J. Veg. Sci. 15, 661–668 (2004).

    • Google Scholar
  • 55.

    Bekker, R. M., Verweij, G. L., Bakker, J. P. & Fresco, L. F. M. Soil seed bank dynamics in hayfield succession. J. Ecol. 88, 594–607 (2000).

    • Article
    • Google Scholar
  • 56.

    Plue, J. & Hermy, M. Consistent seed bank spatial structure across semi-natural habitats determines plot sampling. J. Veg. Sci. 23, 505–516 (2012).

    • Article
    • Google Scholar
  • 57.

    Suzuki, M. & Ito, E. Combined effects of gap creation and deer exclusion on restoration of belowground systems of secondary woodlands: A field experiment in warm-temperate monsoon Asia. For. Ecol. Manage. 329, 227–236 (2014).

    • Article
    • Google Scholar
  • 58.

    Takeshita, K. et al. Temporal changes in molar wear rate of a sika deer population under density-dependent food limitation. J. Zool. 297, 139–145 (2015).

    • Article
    • Google Scholar
  • 59.

    Kaji, K., Miyaki, M. & Uno, H. Conservation and management of Ezo shika deer (Cervus nippon yesoensis) (in Japanese). (2006).

  • 60.

    Miyashita, T. et al. Forest edge creates small-scale variation in reproductive rate of sika deer. Popul. Ecol. 50, 111–120 (2007).

    • Article
    • Google Scholar
  • 61.

    Alm, U., Birgersson, B. & Leimar, O. The effect of food quality and relative abundance on food choice in fallow deer. Anim. Behav. 64, 439–445 (2002).

    • Article
    • Google Scholar
  • 62.

    Shinoda, Y. & Akasaka, M. Incorporating habitats of plants and ungulates contributes to prioritize targets for conserving regional plant diversity. Ecosphere 8, 1–10 (2017).

    • Article
    • Google Scholar
  • 63.

    Hashimoto, Y. & Fujiki, D. List of food plants and unpalatable plants of sika deer (Cervus nippon) in Japan (in Japanese). Humans Nat. 25, 133–160 (2014).

    • Google Scholar
  • 64.

    Lunn, D. J., Thomas, A., Best, N. & Spiegelhalter, D. WinBUGS – A Bayesian modelling framework: Concepts, structure, and extensibility. Stat. Comput. 10, 325–337 (2000).

    • Article
    • Google Scholar
  • 65.

    Gelman, A. & Rubin, D. B. Inference from Iterative Simulation Using Multiple Sequences. Stat. Sci. 7, 457–511 (1992).

  • 66.

    R Core Team. R: A Language and Environment for Statistical Computing. (2014).


  • Source: Ecology - nature.com

    Why recycling lighting waste in Australia is so important

    Evidence in the Japan Sea of microdolomite mineralization within gas hydrate microbiomes