in

Evidence in the Japan Sea of microdolomite mineralization within gas hydrate microbiomes

  • 1.

    Matsumoto, R., Hiromatsu, M. & Sato, M. Fluid flow and Evolution of gas hydrate mounds of Joetsu Basin, Eastern Margin of Japan Sea: Constraints from high-resolution geophysical survey by AUV. Proc. 7 thIntl. Conference on Gas Hydrates, https://www.pet.hw.ac.uk/icgh7/papers/icgh2011Final00468.pdf (2011).

  • 2.

    Matsumoto, R. et al. Formation and collapse of gas hydrates deposits in high methane flux area of the Joetsu basin, eastern margin of Japan Sea. J. Geogr. 118, 43–71 (2009).

  • 3.

    Nguyen, B. T. T. et al. Compaction of smectite-rich mudstone and its influence on pore pressure in the deep-water Joetsu Basin, Sea of Japan. Mar. Petrol. Geol. 78, 848–869 (2016).

  • 4.

    Monzawa, N., Kaneko, M. & Osawa, M. A review of petroleum system in the deep water area of the Toyama Trough to the Sado Island in the Japan Sea, based on the results of the METI Sado Nansei Oki drilling. J. Japan. Assoc. Petrol. Tech. 71, 618–627, https://doi.org/10.3720/japt.71.618 (2006).

  • 5.

    Hachikubo, A., Yanagawa, K., Tomaru, H., Lu, H. & Matsumoto, R. Molecular and isotopic composition of volatiles in gas hydrates and in sediment from the Joetsu Basin, eastern margin of the Japan Sea. Energies 8, 4647–4688 (2015).

  • 6.

    Watanabe, Y., Nakai, S., Hiruta, A., Matsumoto, R. & Yoshida, K. U–Th dating of carbonate nodules from methane seeps off Joetsu, Eastern Margin of Japan Sea. Earth Planet. Sci. Lett. 28, 89–96 (2008).

  • 7.

    Matsumoto, R. et al. Processes involved in massive gas hydrate formation in the Sea of Japan as inferred from U-Th ages of MDAC and from H2S concentrations of hydrates. Goldschmidt Abstracts 2626, https://goldschmidtabstracts.info/2017/2626.pdf (2017).

  • 8.

    Hiruta, A., Wang, L.-C., Ishizaki, O. & Matsumoto, R. Last glacial emplacement of methane-derived authigenic carbonates in the Sea of Japan constrained by diatom assemblage, carbon-14, and carbonate content. Mar. Petrol. Geol. 56, 51–62 (2014).

  • 9.

    Zhang, N. et al. Clumped isotope signatures of methane-derived authigenic carbonate presenting equilibrium values of their formation temperatures. Earth Planet. Sci. Lett. 512, 207–213 (2019).

  • 10.

    Snyder, G. T. Pore water profiles and authigenic mineralization in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan Sea. Deep-Sea Res. II 11-13, 1216–1239 (2007).

  • 11.

    Hiruta, A. et al. Methane flux, seafloor gas hydrates, chloride anomalies and sulphate reduction: Joetsu regions, eastern margin of Japan Sea. J. Sed. Soc. Japan 64, 89–93 (2007).

  • 12.

    Hiruta, A., Snyder, G. T., Tomaru, H. & Matsumoto, R. Geochemical constraints for the formation and dissociation of gas hydrate in an area of high methane flux, eastern margin of the Japan Sea. Earth Planet. Sci. Lett. 279, 326–339 (2009).

  • 13.

    Kano, A. et al. Gas hydrate estimates in muddy sediments from the oxygen isotope of water fraction. Chem. Geol. 470, 107–115 (2017).

  • 14.

    Tomaru, H. et al. Origin and age of pore waters in an actively venting gas hydrate field near Sado Island, Japan Sea: Interpretation of halogen and 129I distributions. Chem. Geol. 236, 350–366 (2007).

  • 15.

    Tomaru, H. et al. Geochemistry of pore waters from gas hydrate research in the eastern margin of the Japan Sea (MD179): J. Japan Assoc. Petrol. Tech. 77, 262–267, https://www.jstage.jst.go.jp/article/japt/77/4/77_262/_pdf/-char/ja (2012).

  • 16.

    Matsumoto, R. et al. Recovery of thick deposits of massive gas hydrates from gas chimney structures, Eastern margin of Japan Sea: Japan Sea Shallow Gas Hydrate Project. Fire in the Ice, NETL 17, 1–11, https://www.netl.doe.gov/sites/default/files/publication/MHNews-2017-Jan.pdf (2017).

  • 17.

    Rodriguez-Blanco, J. D., Shaw, S. & Benning, L. G. A route for the direct crystallization of dolomite. Am. Mineral. 100, 1172–1181 (2015).

  • 18.

    Rodriguez-Blanco, J. D., Sand, K. K. & Benning, L. G. ACC and vaterite as metastable intermediates in the solution based crystallization of CaCO3. New Perspectives on Mineral Nucleation and Growth Ch. 5., (Springer International Publishing, Switzerland, 2017).

  • 19.

    Lutterotti, L., Bortolotti, M., Ischia, G., Lonardelli, I. & Wenk, H.-R. Rietveld texture analysis from diffraction images. Z. Kristallogr. Suppl. 26, 125–130 (2007).

    • Article
    • Google Scholar
  • 20.

    Turpin, M., Nader, F. H. & Kohler, E. Empirical calibration for dolomite stoichiometry calculation: Application on Triassic Muschelkalk-Lettenkohle Carbonates (French Jura). Pil & Gas Science and Tecnology: Rev. IFP Energies Nouvelles 67, 77–85 (2012).

    • CAS
    • Google Scholar
  • 21.

    Legland, D., Arganda-Carreras, I. & Andrey, P. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics, 3532–3534 (2016).

  • 22.

    Petrash, D. A. et al. Microbially catalyzed dolomite formation: From near-surface to burial. Earth-Sci. Rev. 171, 558–562 (2017).

  • 23.

    Sano, Y. et al. Origin of methane-rich natural gas at the West Pacific convergent plate boundary. Sci. Rep. 7(15646), 10pp (2017).

    • ADS
    • Google Scholar
  • 24.

    Wen, H.-Y. et al. Helium and methane sources and fluxes of shallow submarine hydrothermal plumes near the Tokara Islands, Southern Japan. Sci. Rep. 6(34126), 9pp (2016).

    • Google Scholar
  • 25.

    Teichert, B. M. A., Gussone, N., Eisenhauer, A. & Bohrmann, G. Clathrites: Archives of near-seafloor pore-fluid evolution (δ44/40Ca, δ13C, δ18O) in gas hydrate environments. Geology 33, 213–316 (2005).

  • 26.

    Machiyama, H. et al. Heat Flow Distribution around the Joetsu Gas Hydrate Field, Western Joetsu Basin, Eastern Margin of the Japan Sea. Journal Geogr. 118, 986–1007 (2009).

  • 27.

    Vasconcelos, C., McKenzie, J. A., Warthmann, R. & Bernasconi, S. M. Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology 33, 317–320 (2005).

  • 28.

    Hesse, R. & Harrison, W. E. Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins. Earth Planet. Sci. Lett. 55, 453–462 (1981).

  • 29.

    Zhang, F. et al. Dissolved sulphide-catalyzed precipitation of disordered dolomite: Implications for the formation mechanism of sedimentary dolomite. Geochim. Cosmochim. Acta 97, 148–165 (2012).

  • 30.

    Horita, J. Oxygen and carbon isotope fractionation in the system dolomite-water-CO2 to elevated temperatures. Geochim. Cosmochim. Acta 129, 111–124 (2014).

  • 31.

    Nagashima, K., Orihashi, S., Yamamoto, Y. & Takahashi, M. Encapsulation of Saline Solution by Tetrahydrofuran Clathrate Hydrates and Inclusion Migration by Recrystallization. J. Phys. Chem. B 109, 10147–10153 (2005).

  • 32.

    Meckenstock, R. U. et al. Oil Biodegradation: Water droplets in oil are microhabitats for microbial life. Science 345, 673–675 (2014).

  • 33.

    Bennett, B. et al. The controls on the composition of biodegraded oils in the deep subsurface – Part 3. The impact of microorganism distribution on petroleum geochemical gradients in biodegraded petroleum reservoirs. Organic Geochem. 56, 94–105 (2013).

  • 34.

    Mills, H. J., Hodges, C., Wilson, K., MacDonald, I. R. & Sobecky, P. A. Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico. FEMS Microbiol. Ecol. 46, 39–52 (2003).

  • 35.

    Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).

  • 36.

    Yu, I. et al. Decoupling between sulphate reduction and the anaerobic oxidation of methane in the shallow methane seep of the Black sea. FEMS Microbiol. Lett. 365, https://doi.org/10.1093/femsle/fny235 (2018).

  • 37.

    Briggs, B. R. et al. Bacterial dominance in subseafloor sediments characterized by methane hydrates. FEMS Microbiol. Ecol. 81, 89–98 (2012).

  • 38.

    Simister, R. K., Antizis, E. W. & White, H. K. Examining the diversity of microbes in a deep-sea coral community impacted by the Deepwater Horizon spill. Deep-Sea Res. II 129, 157–166 (2016).

  • 39.

    Liu, J. et al. Carbohydrate catabolic capability of a Flavobacteriia bacterium isolated from hadal water. Syst. Appl. Microbiol. 42, 263–274 (2019).

  • 40.

    Krause, S. et al. Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: New insight into an old enigma. Geology. 40, 587–590 (2012).

  • 41.

    Yanagawa K. et al. Distinct microbial communities thriving in gas hydrate-associated sediments from the eastern Japan Sea, J. Asian Earth Sci. 90, 243–249 407 627–626. (2014).

  • 42.

    Reed, D. W. et al. Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl. Environ. Microbiol. 68, 3759–3770.

  • 43.

    Liang, B. et al. High frequency of Thermodesulfovibrio spp. And Anaerolineaceae in a long-term incubation of n-Alkanes-degrading methanogenic enrichment culture. Front. Microbiol. 7, https://doi.org/10.3389/fmicb.2016.01431 (2016).

  • 44.

    Chapman, R., Pohlman, J., Coffin, R., Changton, J. & Lapham, L. Thermogenic gas hydrates in the Northern Cascadia Margin. EOS Trans. 85, 361–365 (2004).

  • 45.

    Jenkins, R. G., Hikida, Y., Chikaraishi, Y., Ohkouchi, N. & Tanabe, K. Microbially induced formation of ooid-like coated grains in the Late Cretaceous methane-seep deposits of the Nakagawa area, Hokkaido, northern Japan. Island Arc. 17, 261–269 (2008).

  • 46.

    Kiel, S. et al. Cretaceous methane-seep deposits from New Zealand and their fauna. Palaeogeogr. Palaeoclimatol. Palaeoecol., https://doi.org/10.1016/j/palaeo.2012.10.033 (2012).

  • 47.

    Vasconcelos, C. & McKenzie, J. A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions, Lagoa Vermelha, Rio de Janeiro, Brazil. Journal of Sedimentary Research 67, 378–390 (1997).

    • CAS
    • Google Scholar
  • 48.

    Bahniuk, A. et al. Characterization of environmental conditions during microbial Mg-carbonate precipitation and early diagenetic dolomite crust formation: Brejo do Espinho, Rio de Janeiro, Brazil. Microbial Carbonates in Space and Time: Implications for Global Exploration and Production (Geological Society Special Publication 418, London, 2015).

  • 49.

    Gunatilaka, A. Spheroidal dolomites – origin by hydrocarbon seepage? Sedimentology 36, 701–710 (1989).

  • 50.

    Cavagna, S., Clari, P. & Martire, L. The role of bacteria in the formation of cold seep carbonates: geological evidence from Monferrato (Tertiary, NW Italy). Sedimentary Geology 126, 253–270 (1999).

  • 51.

    Pollet, T. et al. Prokaryotic community successions and interactions in marine biofilms: the key role of Flavobacteriia. FEMS Microbiol Ecol. 94, https://doi.org/10.1093/femsec/fiy083 (2018).

  • 52.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

  • 53.

    Rosenbaum, J. & Sheppard, S. M. F. An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochim. Cosmochim. Acta 50, 1147–1150 (1986).

  • 54.

    Lamorde, U. A., Parnell, J. & Bowden, S. A. Constraining the genetic relationships of 25-norhopanes, hopanoic and 25-norhopanoic acids in onshore Niger Delta oils using a temperature-dependent material balance. Org. Geochem. 79, 31–43 (2015).

  • 55.

    Bowden, S. A. & Taylor, C. W. The application of surface enhanced Raman scattering to the detection of asphaltic petroleum in sediment extracts: deconvolving three component-mixtures using look-up tables of entire surface enhanced Raman spectra. Anal. Methods, https://doi.org/10.1039/c9ay01859 (2019).

  • 56.

    Kouduka, M. et al. A new DNA extraction method by controlled alkaline treatments from consolidated subsurface sediments. FEMS Microbiol. Lett. 326, 47–54 (2012).

  • 57.

    Nunoura, T. et al. Microbial diversity in deep-sea methane seep sediments presented by SSU rRNA gene tag sequencing. Microbes Environ. 27, https://doi.org/10.1264/jsme2.ME12032 (2009).

  • 58.

    Siddique, A. B. & Unterseher, M. A cost-effective and efficient strategy for Illumina sequencing of fungal communities: a case study of beech endophytes identified elevation as main explanatory factor for diversity and community composition. Fungal Ecol. 20, 175–185 (2016).

    • Article
    • Google Scholar
  • 59.

    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

  • 60.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410, https://doi.org/10.1016/S0022-2836(05)80360-2 (1990).


  • Source: Ecology - nature.com

    The scientists restoring a gold-mining disaster in the Peruvian Amazon

    Decarbonizing the making of consumer products