in

Water filtration by burrowing sandprawns provides novel insights on endobenthic engineering and solutions for eutrophication

  • 1.

    Costanza, R., Kemp, M. & Boynton, W. In Biodiversity Loss: Economic and Ecological Issues (eds. Perrings, C., Maler, K.G., Folke, C., Holling, C.S. & Jansson, B.O.) 84–126 (Cambridge University Press, 1995).

  • 2.

    Burke, L. et al. Coastal ecosystems (World Resources Institute, 2001).

  • 3.

    Sheaves, M., Baker, R., Nagelkerken, I. & Connolly, R. M. True value of estuarine and coastal nurseries for fish: incorporating complexity and dynamics. Estuar. Coast. 38, 401–414 (2015).

    • Article
    • Google Scholar
  • 4.

    Heck, K. L. et al. Trophic transfers from seagrass meadows subsidise diverse marine and terrestrial consumers. Ecosyst. 11, 1198–1210 (2008).

    • Article
    • Google Scholar
  • 5.

    Nagelkerken, I., Sheaves, M., Baker, R. & Connolly, R. The seascape nursery: a novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish Fish. 16, 362–371 (2014).

    • Article
    • Google Scholar
  • 6.

    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    • Article
    • Google Scholar
  • 7.

    Bassett, A. et al. A unifying approach to understanding transitional waters: fundamental properties emerging from ecotone ecosystems. Estuar. Coast. Shelf Sci. 132, 5–16 (2013).

  • 8.

    Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).

  • 9.

    Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).

  • 10.

    Cloern, J. E. et al. Human activities and climate variability drive fast‐paced change across the world’s estuarine–coastal ecosystems. Glob. Change Biol. 22, 513–529 (2016).

  • 11.

    Smith, V. H. & Schindler, D. W. Eutrophication science: where do we go from here? Trends Ecol. Evol. 24, 201–207 (2009).

  • 12.

    Kemp, W. M. et al. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Mar. Ecol. Prog. Ser. 303, 1–29 (2005).

  • 13.

    Borsje, B. W. et al. How ecological engineering can serve in coastal protection. Ecol. Eng. 37, 113–122 (2011).

    • Article
    • Google Scholar
  • 14.

    Triest, L., Stiers, I. & Van Onsem, S. Biomanipulation as a nature-based solution to reduce cyanobacterial blooms. Aquat. Ecol. 50, 461–483 (2016).

  • 15.

    The United Nations world water development report 2018: Nature-based solutions for water. (United Nations Educational, Scientific and Cultural Organization, 2018).

  • 16.

    Kellogg, M. L. et al. Use of oysters to mitigate eutrophication in coastal waters. Estuar. Coast. Shelf Sci. 151, 156–168 (2014).

  • 17.

    Petersen, J. K. et al. Mussels as a tool for mitigation of nutrients in the marine environment. Mar. Pollut. Bull. 82, 137–143 (2014).

  • 18.

    Pillay, D. & Branch, G. M. Bioengineering effects of burrowing thalassinidean shrimps on marine soft-bottom ecosystems. Oceanogr. Mar. Biol. Ann. Rev. 49, 137–192 (2011).

    • Google Scholar
  • 19.

    Reise, K. Sediment mediated species interactions in coastal waters. J. Sea. Res. 48, 127–141 (2002).

  • 20.

    Bouma, T. J., Olenin, S., Reise, K. & Ysebaert, T. Ecosystem engineering and biodiversity in coastal sediments: posing hypotheses. Helgol. Mar. Res. 63, 96–106 (2009).

    • ADS
    • Google Scholar
  • 21.

    Volkenborn, N., Polerecky, L., Wethey, D. S. & Woodin, S. A. Oscillatory porewater bioadvection in marine sediments induced by hydraulic activities of Arenicola Marina. Limnol. Oceanogr. 55, 1231–1247 (2010).

  • 22.

    Pillay, D. Ecosystem engineering by thalassinidean crustaceans: response variability, contextual dependencies and perspectives on future research. Diversity 11, 64 (2019).

    • Article
    • Google Scholar
  • 23.

    Papaspyrou, S., Gregersen, T., Cox, R. P., Thessalou-Legaki, M. & Kristensen, E. Sediment properties and bacterial community in burrows of the ghost shrimp Pestarella tyrrhena (Decapoda: Thalassinidea). Aquat. Microb. Ecol. 38, 181–190 (2005).

    • Article
    • Google Scholar
  • 24.

    Branch, G. M. & Pringle, A. The impact of the sand prawn Callianassa kraussi Stebbing on sediment turnover and on bacteria, meiofauna, and benthic microflora. J. Exp. Mar. Biol. Ecol. 107, 219–235 (1987).

    • Article
    • Google Scholar
  • 25.

    Kinoshita, K., Wada, M., Kogure, K. & Furota, T. Mud shrimp burrows as dynamic traps and processors of tidal-flat materials. Mar. Ecol. Prog. Ser. 247, 159–164 (2003).

  • 26.

    Moyo, R., Pillay, D. & Baeza, J. A. Symbiont-mediated shifts in sandprawn behaviour: Implications for ecosystem functioning in marine soft-sediment ecosystems. J. Exp. Mar. Biol. Ecol. 486, 296–304 (2017).

    • Article
    • Google Scholar
  • 27.

    Ziebis, W., Forster, S., Huettel, M. & Jørgensen, B. B. Complex burrows of the mud shrimp Callianassa truncata and their geochemical impact in the sea bed. Nature 382, 619–622 (1996).

  • 28.

    Pemberton, G. S., Risk, M. J. & Buckley, D. E. Supershrimp: deep bioturbation in the Strait of Canso, Nova Scotia. Science 192, 790–790 (1976).

  • 29.

    Takeuchi, S. et al. Response of suspension-feeding clams to natural removal of bioturbating shrimp on a large estuarine intertidal sandflat in western Kyushu, Japan. J. Exp. Mar. Biol. Ecol. 448, 308–320 (2013).

    • Article
    • Google Scholar
  • 30.

    Volkenborn, N., Polerecky, L., Wethey, D. S., DeWitt, T. H. & Woodin, S. A. Hydraulic activities by ghost shrimp Neotrypaea californiensis induce oxic− anoxic oscillations in sediments. Mar. Ecol. Prog. Ser. 455, 141–156 (2012).

  • 31.

    Pillay, D., Branch, G. M. & Forbes, A. T. Experimental evidence for the effects of the thalassinidean sandprawn Callianassa kraussi on macrobenthic communities. Mar. Biol. 152, 611–618 (2007a).

    • Article
    • Google Scholar
  • 32.

    Pillay, D., Branch, G. M. & Forbes, A. T. Effects of Callianassa kraussi on microbial biofilms and recruitment of macrofauna: a novel hypothesis for adult-juvenile interactions. Mar. Ecol. Prog. Ser. 347, 1–14 (2007b).

  • 33.

    Siebert, T. & Branch, G. M. Ecosystem engineers: interactions between eelgrass Zostera capensis and the sandprawn Callianassa kraussi and their indirect effects on the mudprawn Upogebia africana. J. Exp. Mar. Biol. Ecol. 338, 253–270 (2006).

    • Article
    • Google Scholar
  • 34.

    Pillay, D., Williams, C. & Whitfield, A. Indirect effects of bioturbation by the burrowing sandprawn Callichirus kraussi on the growth of a benthivorous fish (Liza richardsonii). Mar. Ecol. Prog. Ser. 453, 151–158 (2012).

  • 35.

    Harding, W. Water quality trends and the influence of salinity in a highly regulated estuary near Cape Town, South Africa. SA J. Sci. 90, 240–246 (1994).

    • CAS
    • Google Scholar
  • 36.

    Wynberg, R. & Branch, G. M. Disturbance associated with bait-collection for sandprawns (Callianassa kraussi) and mudprawns (Upogebia africana): Long-term effects on the biota of intertidal sandflats. J. Mar. Res. 52, 523–558 (1994).

    • Article
    • Google Scholar
  • 37.

    Nel, P. & Branch, G. M. Assessment of the abundance and distribution of burrowing sandprawns and mudprawns (Callichirus and Upogebia species) in Langebaan Lagoon, South Africa. Afr. J. Mar. Sci. 35, 195–208 (2013).

    • Article
    • Google Scholar
  • 38.

    Moyo, R. K., Pillay, D. & Wright, A. Density- versus trait-mediated responses of a symbiont (Betaeus jucundus) to burrows of a burrowing crustacean (Callichirus kraussi). Estuar. Coast. Shelf Sci. 209, 183–190 (2018).

  • 39.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, 2019.

  • 40.

    Chambers, J. M. In Statistical Models in S (eds. Chambers, J. M. & Hastie, T. J.) 95–144 (Wadsworth & Brooks/Cole, 1992).

  • 41.

    Wilkinson, G. N. & Rogers, C. E. Symbolic descriptions of factorial models for analysis of variance. J. R. Stat. Soc. C-Appl 22, 392–399 (1973).

    • Google Scholar
  • 42.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    • Article
    • Google Scholar
  • 43.

    Fox, J. & Weisenberg, S. An R companion to applied regression. 2nd edition. Thousand Oaks, California (2011).

  • 44.

    Lenth, R. V. Least-squares means: The R package. J. Stat. Softw. 69, 1–33 (2016).

    • Article
    • Google Scholar
  • 45.

    Branch, G. M., Griffiths, C. L., Branch, M. L. & Beckley, L. E. Two Oceans: a guide to the marine life of southern Africa. Struik Nature, Cape Town (2017).

  • 46.

    Forbes, A. T. An unusual abbreviated larval life in the estuarine burrowing prawn Callianassa kraussi (Crustacea: Decapoda: Thalassinidea). Mar. Biol. 22, 361–365 (1973).

    • Article
    • Google Scholar
  • 47.

    Griffis, R. B. & Suchanek, T. H. A model of burrow architecture and trophic modes in thalassinidean shrimp (Decapoda: Thalassinidea). Mar. Ecol. Prog. Ser. 79, 171–183 (1991).

  • 48.

    Dobbs, F. C. & Guckert, J. B. Callianassa trilobata (Crustacea: Thalassinidea) influences abundance of meiofauna and biomass, composition, and physiologic state of microbial communities within its burrow. Mar. Ecol. Prog. Ser. 45, 69–79 (1988).

  • 49.

    Webb, A. P. & Eyre, B. D. Effect of natural populations of burrowing thalassinidean shrimp on sediment irrigation, benthic metabolism, nutrient fluxes and denitrification. Mar. Ecol. Prog. Ser. 268, 205–220 (2004).

  • 50.

    D’Andrea, A. F. & DeWitt, T. H. Geochemical ecosystem engineering by the mud shrimp Upogebia pugettensis (Crustacea: Thalassinidae) in Yaquina Bay, Oregon: density-dependent effects on organic matter remineralization and nutrient cycling. Limnol. Oceanogr. 54, 1911–1932 (2009).

  • 51.

    Koike, I. & Mukai, H. Oxygen and inorganic nitrogen contents and fluxes in burrows of the shrimps Callianassa japonica and Upogebia Major. Mar. Ecol. Prog. Ser. 12, 185–190 (1983).

  • 52.

    Lohrer, A. M., Thrush, S. M. & Gibbs, M. M. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 431, 1092–1095 (2004).

  • 53.

    Zhao, L. et al. Bioturbation by the razor clam Sinonovacula constricta affects benthic nutrient fluxes in aquaculture wastewater treatment ecosystems. Aquacult Env. Interac. 11, 87–96 (2019).

    • Article
    • Google Scholar
  • 54.

    Meysman, F. J., Middelburg, J. J. & Heip, C. H. Bioturbation: a fresh look at Darwin’s last idea. Trends Ecol. Evol. 21, 688–695 (2006).

  • 55.

    Griffiths, J. R. et al. The importance of benthic–pelagic coupling for marine ecosystem functioning in a changing world. Glob. Change Biol. 23, 2179–2196 (2017).

  • 56.

    Pillay, D., Branch, G. M. & Forbes, A. T. Habitat change in an estuarine embayment: anthropogenic influences and a regime shift in biotic interactions. Mar. Ecol. Prog. Ser. 370, 19–31 (2008).

  • 57.

    Allanson, B. & Baird, D., Estuaries of South Africa. Cambridge University Press (2008).

  • 58.

    Atkinson, R. J. A. & Taylor, A. C. Aspects of the physiology, biology and ecology of thalassinidean shrimps in relation to their burrow environment. Oceanogr. Mar. Biol. Ann. Rev. 43, 173–210 (2005).

    • Google Scholar

  • Source: Ecology - nature.com

    Identification of a parasitic symbiosis between respiratory metabolisms in the biogeochemical chlorine cycle

    Lizards and rabbits may increase Chagas infection risk in the Mediterranean-type ecosystem of South America