in

Relationships Between Environmental Conditions And Fish Assemblages In Tropical Savanna Headwater Streams

  • 1.

    Gorman, O. T. & Karr, J. R. Habitat Structure and Stream Fish Communities. Ecology 59, 507–515 (1978).

    • Article
    • Google Scholar
  • 2.

    Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The River Continuum Concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).

    • Article
    • Google Scholar
  • 3.

    Penczak, T. Effects of removal and regeneration of bankside vegetation on fish population dynamics in the Warta River, Poland. Hydrobiologia 303, 207–210, https://doi.org/10.1007/BF00034057 (1995).

    • Article
    • Google Scholar
  • 4.

    Tejerina-Garro, F. L. et al. Effects of natural and anthropogenic environmental changes on riverine fish assemblages: A framework for ecological assessment of rivers. Brazilian Arch. Biol. Technol. 48, 91–108, https://doi.org/10.1590/S1516-89132005000100013 (2005).

    • Article
    • Google Scholar
  • 5.

    Rivaes, R. et al. Reducing river regulation effects on riparian vegetation using flushing flow regimes. Ecol. Eng. 81, 428–438 (2015).

    • Article
    • Google Scholar
  • 6.

    Teresa, F. B. & Romero, R. D. M. Influence of the riparian zone phytophysiognomies on the longitudinal distribution of fishes: evidence from a Brazilian savanna stream. Neotrop. Ichthyol. 8, 163–170, https://doi.org/10.1590/S1679-62252010000100019 (2010).

    • Article
    • Google Scholar
  • 7.

    Mendonça, F. P., Magnusson, W. E. & Zuanon, J. Relationships between Habitat Characteristics and Fish Assemblages in Small Streams of Central Amazonia. Copeia 2005, 751–764 (2005).

    • Article
    • Google Scholar
  • 8.

    Murray, S. & Innes, J. L. Effects of environment on fish species distributions in the Mackenzie River drainage basin of northeastern British Columbia, Canada. Ecol. Freshw. Fish 18, 183–196, https://doi.org/10.1111/j.1600-0633.2008.00336.x (2009).

    • Article
    • Google Scholar
  • 9.

    Warren, D. R., Mineau, M. M., Ward, E. J. & Kraft, C. E. Relating fish biomass to habitat and chemistry in headwater streams of the northeastern United States. Environ. Biol. Fishes 88, 51–62, https://doi.org/10.1007/s10641-010-9617-x (2010).

    • Article
    • Google Scholar
  • 10.

    Naiman, R. J., Décamps, H. & McClain, M. E. Riparia: Ecology, Conservation, and Management of Streamside Communities. (Elsevier Academic Press, 2005).

  • 11.

    Uieda, V. S., Uieda, W. & Paulista, U. E. Species composition and spatial distribution of a stream fish assemblage in the east coast of Brazil: comparison of two field study methodologies. Brazilian J. Biol. 61, 377–388, https://doi.org/10.1590/S1519-69842001000300006 (2001).

  • 12.

    Melo, A. S. & Froehlich, C. G. Colonization by macroinvertebrates of experimentally disturbed stones in three tropical streams differing in size. Int. Rev. Hydrobiol. 89, 317–325 (2004).

    • Article
    • Google Scholar
  • 13.

    Santos, G. M., Mérona, B. de, Juras, A. A. & Jégu, M. Peixes do Baixo Tocantins: 20 Anos depois da Usina Hidrelétrica de Tucuruí. (Eletronorte, 2004).

  • 14.

    Webster, J. R. & Meyer, J. L. Organic Matter Budgets for Streams: A Synthesis. J. North Am. Benthol. Soc. 16, 141–161, https://doi.org/10.2307/1468247 (1997).

    • Article
    • Google Scholar
  • 15.

    Montgomery, D. R. Process domains and the river continuum. J. Am. Water Resour. Assoc. 35, 397–410 (1999).

  • 16.

    Lowe-McConnell, R. H. Estudos ecológicos de comunidades de peixes tropicais. (Edusp – Editora da Universidade de São Paulo, 1999).

  • 17.

    Castro, R. M. C. & Casatti, L. The fish fauna from a small forest stream of the upper Parana River basin, southeastern Brazil. Ichtyol.Explor. Freshw. 7, 337–352, https://doi.org/10.1179/174329307X173706 (1997).

    • Article
    • Google Scholar
  • 18.

    Pusey, B. J. & Arthington, A. H. Importance of the riparian zone to conservation and management of freshwater fish: a review. Mar. Freshw. Res. 54, 1–16, https://doi.org/10.1071/MF02041 (2003).

    • Article
    • Google Scholar
  • 19.

    Knight, A. W. & Bottorff, R. L. The importance of riparian vegetation to stream ecosystems. in California Riparian Systems: Ecology, Conservation, and Production Management (eds Warner, R. E. & Hendrix, K. M.) 160–167 (University of California Press, 1984).

  • 20.

    Grubaugh, J. W., Wallace, J. B. & Houston, E. S. Longitudinal changes of macroinvertebrate communities along an Appalachian stream continuum. Can. J. Fish. Aquat. Sci. 53, 896–909 (1996).

    • Article
    • Google Scholar
  • 21.

    Braccia, A. & Voshell, R. Benthic Macroinvertebrate Fauna in Small Streams Used by Cattle in the Blue Ridge Mountains, Virginia. Northeast. Nat. 13, 269–286 (2006).

    • Article
    • Google Scholar
  • 22.

    Diniz-Filho, J. A. F., Bini, L. M. & Hawkins, B. A. Spatial autocorrelation and red herrings in geographical ecology. Glob. Ecol. Biogeogr. 12, 53–64 (2003).

    • Article
    • Google Scholar
  • 23.

    Dormann, F. C. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography (Cop.). 30, 609–628 (2007).

    • Article
    • Google Scholar
  • 24.

    Kühn, I. Incorporating spatial autocorrelation may invert observed patterns. Divers. Distrib. 13, 66–69, https://doi.org/10.1111/j.1472-4642.2006.00293.x (2007).

    • Article
    • Google Scholar
  • 25.

    Bini, L. M. et al. Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression. Ecography (Cop.). 32, 193–204 (2009).

    • Article
    • Google Scholar
  • 26.

    Lv, S. J. & Zhao, M. The dynamic complexity of a three species food chain model. Chaos Solitons & Fractals 37, 1469–1480 (2008).

  • 27.

    Legendre, P. & Legendre, L. Canonical analysis. In Developments in Environmental Modelling 20, https://doi.org/10.1016/B978-0-444-53868-0.50011-3 (Elsevier Science B. V., 2012).

    • Google Scholar
  • 28.

    Legendre, P. & Legendre, L. Ordination in reduced space. in Developments in Environmental Modelling 20, https://doi.org/10.1016/B978-0-444-53868-0.50009-5 (Elsevier Science B. V. 2012).

    • Google Scholar
  • 29.

    Thomas, G. H. et al. Regional variation in the historical components of global avian species richness. Glob. Ecol. Biogeogr. 17, 340–351 (2008).

    • Article
    • Google Scholar
  • 30.

    Das, M. K. et al. Influence of ecological factors on the patterns of fish species richness in tropical Indian rivers. Acta Ichthyol. Piscat. 42, 47–58, https://doi.org/10.3750/AIP2011.42.1.06 (2012).

    • Article
    • Google Scholar
  • 31.

    Davies, P. M., Bunn, S. E. & Hamilton, S. K. Primary Production in Tropical Streams and Rivers. In Tropical Stream Ecology (ed. Dudgeon, D.) 23–42, https://doi.org/10.1016/B978-012088449-0.50004-2 (Elsevier Inc., 2008).

    • Google Scholar
  • 32.

    Osborne, L. L. & Wiley, M. J. Influence of Tributary Spatial Position on the Structure of Warmwater Fish Communities. Can. J. Fish. Aquat. Sci. 49, 671–681, https://doi.org/10.1139/f92-076 (1992).

    • Article
    • Google Scholar
  • 33.

    Yan, Y. Z., Xiang, X., Chu, L., Zhan, Y. & Fu, C. Influences of local habitat and stream spatial position on fish assemblages in a dammed watershed, the Qingyi Stream, China. Ecol. Freshw. Fish 20, 199–208, https://doi.org/10.1111/j.1600-0633.2010.00478.x (2011).

    • Article
    • Google Scholar
  • 34.

    Dias, M. S. et al. Global imprint of historical connectivity on freshwater fish biodiversity. Ecol. Lett. 17, 1130–1140, https://doi.org/10.1111/ele.12319 (2014).

  • 35.

    Dong, X., Muneepeerakul, R., Olden, J. D. & Lytle, D. A. The effect of spatial configuration of habitat capacity on β diversity. Ecosphere 6, 220 (2015).

    • Article
    • Google Scholar
  • 36.

    Rosindell, J., Hubbell, S. P., He, F., Harmon, L. J. & Etienne, R. S. The case for ecological neutral theory. Trends in Ecology and Evolution 27, 203–208 (2012).

    • Article
    • Google Scholar
  • 37.

    Rodriguez-Iturbe, I., Muneepeerakul, R., Bertuzzo, E., Levin, S. A. & Rinaldo, A. River networks as ecological corridors: A complex systems perspective for integrating hydrologic, geomorphologic, and ecologic dynamics. Water Resour. Res. 45, 1–22, https://doi.org/10.1029/2008WR007124 (2009).

    • Article
    • Google Scholar
  • 38.

    Hanski, I., Foley, P. & Hassell, M. Random walks in a metapopulation: How much density dependence is necessary for long-term persistence? J. Anim. Ecol. 65, 274–282 (1996).

    • Article
    • Google Scholar
  • 39.

    Olden, J. D., Poff, N. L. & Bestgen, K. R. Life-history strategies predict fish invasions and extirpations in the Colorado River Basin. Ecol. Monogr. 76, 25–40 (2006).

    • Article
    • Google Scholar
  • 40.

    Cottenie, K. & De Meester, L. Metacommunity structure: Synergy of biotic interactions as selective agents and dispersal as fuel. Ecology 85, 114–119 (2004).

    • Article
    • Google Scholar
  • 41.

    Thompson, R. & Townsend, C. A truce with neutral theory: Local deterministic factors, species traits and dispersal limitation together determine patterns of diversity in stream invertebrates. J. Anim. Ecol. 75, 476–484 (2006).

    • Article
    • Google Scholar
  • 42.

    Macedo, D. R. et al. The relative influence of catchment and site variables on fish and macroinvertebrate richness in cerrado biome streams. Landsc. Ecol. 29, 1001–1016, https://doi.org/10.1007/s10980-014-0036-9 (2014).

    • Article
    • Google Scholar
  • 43.

    Leal, C. G. et al. Is environmental legislation conserving tropical stream faunas? A large-scale assessment of local, riparian and catchment-scale influences on Amazonian fish. J. Appl. Ecol. 55, 1312–1326, https://doi.org/10.1111/1365-2664.13028 (2018).

    • Article
    • Google Scholar
  • 44.

    Leitão, R. P. et al. Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography (Cop.). 41, 219–232, https://doi.org/10.1111/ecog.02845 (2018).

  • 45.

    de Carvalho, D. R. et al. A fish-based multimetric index for Brazilian savanna streams. Ecol. Indic. 77, 386–396, https://doi.org/10.1016/j.ecolind.2017.02.032 (2017).

    • Article
    • Google Scholar
  • 46.

    Bini, L. M. et al. Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression. Ecography (Cop.) 32, 193–204 (2009).

    • Article
    • Google Scholar
  • 47.

    Brea, M. & Zucol, A. F. Paraná-Paraguay Basin: A review of the geology and the plant fossil record. In Historical biogeography of Neotropical freshwater fishes. (eds. JS, A. & RE, R.) 69–87 (University of California Press, 2011).

  • 48.

    Jackson, C. R., Churchill, P. F. & Roden, E. E. Successional changes in bacterial assemblage structure during epilithic biofilm development. Ecology 82, 555–566 (2001).

    • Article
    • Google Scholar
  • 49.

    Oberdorff, T., Hugueny, B. & Vigneron, T. Is assemblage variability related to environmental variability? An answer for riverine fish. OIKOS 93, 419–428, https://doi.org/10.1034/j.1600-0706.2001.930307.x (2001).

    • Article
    • Google Scholar
  • 50.

    Väliverronen, E. Biodiversity and the power of metaphor in environmental discourse. Sci. Stud. (St. Bonaventure). 11, 19–34 (1998).

    • Google Scholar
  • 51.

    Hoeinghaus, D. J., Winemiller, K. O. & Birnbaum, J. S. Local and regional determinants of stream fish assemblage structure: inferences based on taxonomic vs. functional groups. J. Biogeogr. 34, 324–338 (2007).

    • Article
    • Google Scholar
  • 52.

    Fernandes, I. M., Henriques-Silva, R., Penha, J., Zuanon, J. & Peres-Neto, P. R. Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: The case of floodplain-fish communities. Ecography (Cop.). 37, 464–475, https://doi.org/10.1111/j.1600-0587.2013.00527.x (2014).

    • Article
    • Google Scholar
  • 53.

    Monroe, J. B., Baxter, C. V., Olden, J. D. & Angermeier, P. L. Freshwaters in the Public Eye: Understanding the Role of Images and Media in Aquatic Conservation. Fisheries 34, 581–585 (2009).

    • Article
    • Google Scholar
  • 54.

    Casatti, L., Langeani, F. & Ferreira, C. Effects of Physical Habitat Degradation on the Stream Fish Assemblage Structure in a Pasture Region. Environ. Manage. 38, 974–982, https://doi.org/10.1007/s00267-005-0212-4 (2006).

  • 55.

    Pinto, B., Araujo, F. & Hughes, R. Effects of Landscape and Riparian Condition on a Fish Index of Biotic Integrity in a Large Southeastern Brazil River. Hydrobiologia 556, 69–83, https://doi.org/10.1007/s10750-005-9009-y (2006).

    • Article
    • Google Scholar
  • 56.

    Rocha, F. C., Casatti, L., Carvalho, F. R. & Silva, A. M. Fish assemblages in stream stretches occupied by cattail (Typhaceae, Angiospermae) stands in Southeast Brazil. Neotropical Ichthyology 7, 241–250, https://doi.org/10.1590/S1679-62252009000200016 (2009).

    • Article
    • Google Scholar
  • 57.

    Alexandre, C. V., Esteves, K. E. & de Moura e Mello, M. A. M. M. Analysis of fish communities along a rural-urban gradient in a neotropical stream (Piracicaba River Basin, São Paulo, Brazil). Hydrobiologia 641, 97–114, https://doi.org/10.1007/s10750-009-0060-y (2010).

  • 58.

    Silva, A. G. & Martinez, C. B. R. Morphological changes in the kidney of a fish living in an urban stream. Environ. Toxicol. Pharmacol. 23, 185–192, https://doi.org/10.1016/j.etap.2006.08.009 (2007).

  • 59.

    Ferreira, A., Hahn, N. S. & Delariva., R. L. Ecologia alimentar de Piabina argentea (Teleostei, Tetragonopterinae) nas fases de pré e pós-represamento do rio Corumbá, GO. Acta Limnologica Brasiliensia 14, 43–52 (2002).

    • Google Scholar
  • 60.

    Takahashi, E. L. H., Rosa, F. R. T., Langeani, F. & Nakaghi, L. S. O. Spatial and seasonal patterns in fish assemblage in Córrego Rico, upper Paraná River basin. Neotrop. Ichthyol. 11, 143–152, https://doi.org/10.1590/S1679-62252013000100017 (2013).

    • Article
    • Google Scholar
  • 61.

    Schulz, U. H. & Martins-Junior, H. Astyanax fasciatus as bioindicator of water pollution of Rio dos Sinos, RS, Brazil. Braz. J. Biol. 61, 615–622, https://doi.org/10.1590/S1519-69842001000400010 (2001).

  • 62.

    Melo, F. C. S. Ade, Maldonado, I. RdosS. C., Benjamin, LdosA. & Matta, S. L. Pda Biologia reprodutiva de fêmeas de Lambari-prata (Astyanax scabripinnis) (Characidae, Tetragonopterinae) em tanques de piscicultura. Rev Ceres 52, 811–829 (2005).

    • Google Scholar
  • 63.

    Carvalho, F. M. V., De Marco, P. & Ferreira, L. G. The Cerrado into-pieces: Habitat fragmentation as a function of landscape use in the savannas of central Brazil. Biol. Conserv. 142, 1392–1403 (2009).

    • Article
    • Google Scholar
  • 64.

    Bischoff, R. J., Gould, J. L. & Rubenstein, D. I. Tail size and female choice in the guppy (Poecilia reticulata). Behav. Ecol. Sociobiol. 17, 253–255, https://doi.org/10.1007/BF00300143 (1985).

    • Article
    • Google Scholar
  • 65.

    Dzikowski, R., Hulata, G., Karplus, I. & Harpaz, S. Effect of temperature and dietary L-carnitine supplementation on reproductive performance of female guppy (Poecilia reticulata). Aquaculture 199, 323–332, https://doi.org/10.1016/S0044-8486(01)00561-0 (2001).

  • 66.

    Weetman, D., Atkinson, D. & Chubb, J. C. Effects of temperature on anti-predator behaviour in the guppy, Poecilia reticulata. Anim. Behav. 55, 1361–1372, https://doi.org/10.1006/anbe.1997.0666 (1998).

  • 67.

    Kramer, D. L. & Mehegan, J. P. Aquatic surface respiration, an adaptive response to hypoxia in the guppy, Poecilia reticulata (Pisces, Poeciliidae). Environ. Biol. Fishes 6, 299–313, https://doi.org/10.1007/BF00005759 (1981).

    • Article
    • Google Scholar
  • 68.

    Fialho, A. P., Oliveira, L. G., Tejerina-Garro, F. L. & De Mérona, B. Fish-habitat relationship in a tropical river under anthropogenic influences. Hydrobiologia 598, 315–324, https://doi.org/10.1007/s10750-007-9165-3 (2008).

  • 69.

    MacKenzie, R. A. Impacts of riparian forest removal on Palauan streams. Biotropica 40, 666–675, https://doi.org/10.1111/j.1744-7429.2008.00433.x (2008).

    • Article
    • Google Scholar
  • 70.

    Etheridge, E. C., Harrod, C., Bean, C. W. & Adams, C. E. Has habitat heterogeneity promoted phenotypic and ecological sub-structuring among a Coregonus lavaretus population in a large Scottish lake? J. Fish Biol. 77, 2391–2404, https://doi.org/10.1111/j.1095-8649.2010.02827.x (2010).

  • 71.

    Lowrance, R. et al. Riparian Forests as Nutrient Filters in Agricultural Watersheds. Bioscience 34, 374–377, https://doi.org/10.2307/1309729 (1984).

    • Article
    • Google Scholar
  • 72.

    Detenbeck, N. E., Devore, P. W., Niemi, G. J. & Lima, A. Recovery of temperate-stream fish communities from disturbance – a review of case studies and synthesis of theory. Environ. Manage. 16, 33–53 (1992).

  • 73.

    Armour, C. L., Duff, D. A. & Elmore, W. The effects of livestock grazing on riparian and stream ecosystems. Am. Fish. Soc. 16, 7–12, 10.1577/1548-8446(1994)019<0009:TEOLGO>2.0.CO;2 (1991).

  • 74.

    Allan, J. D. & Flecker, A. S. Biodiversity Conservation in Running Waters. Bioscience 43, 32–43, https://doi.org/10.2307/1312104 (1993).

    • Article
    • Google Scholar
  • 75.

    Matlack, G. R. Vegetation dynamics of forest edge-trends in space and sucession time. J. Ecol. 82, 113–123 (1994).

    • Article
    • Google Scholar
  • 76.

    Cummins, K. W. et al. Organic matter budgets for stream ecosystems: Problems in their evaluation. in Stream ecology: Application and Testing of General Ecological Theory. (eds. Barnes, J. R. & Minshall, G. W.) 299–353 (Plenum Press, 1983).

  • 77.

    Sazima, M. & Sazima, I. Oil gathering bees visit flowers of eglandular morphs of the oil-producing Malpighiaceae. Bot. Acta 102, 106–111 (1989).

    • Article
    • Google Scholar
  • 78.

    Garavello, J. C. & Britski, H. A. Family Anostomidae (Headstanders). in Check List of the Freshwater Fishes of South and Central America. (eds. Reis, R. E., Kullander, S. O. & Ferraris Jr., C. J.) 71–84 (Editora da Pontifícia Universidade Católica do Rio Grande do Sul, 2003).

  • 79.

    Webster, J. R. & Benfield, E. F. Vascular plant breakdown in freshwater ecosystems. Annu. Rev. Ecol. Syst. 17, 567–594, https://doi.org/10.1146/annurev.es.17.110186.003031 (1986).

    • Article
    • Google Scholar
  • 80.

    Valério, S. B., Súarez, Y. R., Felipe, T. R. A., Tondato, K. K. & Ximenes, L. Q. L. Organization patterns of headwater-stream fish communities in the Upper Paraguay–Paraná basins. Hydrobiologia 583, 241–250, https://doi.org/10.1007/s10750-006-0533-1 (2007).

    • Article
    • Google Scholar
  • 81.

    Sazima, I. Similarities in feeding behaviour between some marine and freshwater fishes in two tropical communities. J. Fish Biol. 29, 53–65, https://doi.org/10.1111/j.1095-8649.1986.tb04926.x (1986).

    • Article
    • Google Scholar
  • 82.

    de Araujo, R. B. & Garutti, V. Ecology of a stream from upper Paraná River basin inhabited by Aspidoras fuscoguttatus Nijssen & Isbrücker, 1976 (Siluriformes, Callichthyidae). Braz. J. Biol. 63, 363–372 (2003).

    • Article
    • Google Scholar
  • 83.

    Brandão-Gonçalves, L., Lima-Júnior, S. E. & Suarez, Y. R. Hábitos alimentares de Bryconamericus stramineus Eigenmann, 1908 (Characidae), em diferentes riachos da sub-bacia do Rio Guiraí, Mato Grosso do Sul, Brasil. Biota Neotrop, https://doi.org/10.1590/S1676-06032009000100016 (2009).

    • Article
    • Google Scholar
  • 84.

    Vasconcelos, L. P., Súarez, Y. R. & Lima-Junior, S. E. Population aspects of Bryconamericus stramineus in streams of the upper Paraná River basin, Brazil. Biota Neotrop. 11, 55–62, https://doi.org/10.1590/S1676-06032011000200006 (2011).

    • Article
    • Google Scholar
  • 85.

    Felipe, T. R. A. & Súarez, Y. R. Caracterização e influência dos fatores ambientais nas assembléias de peixes de riachos em duas microbacias urbanas, Alto Rio Paraná. Biota Neotrop. 10, 143–151, https://doi.org/10.1590/S1676-06032010000200018 (2010).

    • Article
    • Google Scholar
  • 86.

    Casatti, L. et al. From forests to cattail: how does the riparian zone influence stream fish? Neotrop. Ichthyol. 10, 205–214, https://doi.org/10.1590/S1679-62252012000100020 (2012).

    • Article
    • Google Scholar
  • 87.

    Melo, T. L. de. Avaliação espacial das variáveis ambientais e da estrutura trófica da ictiofauna de tributários da bacia Tocantins-Araguaia, Brasil Central. Centro de Ciências Biológicas e da Saúde Ph D, (Universidade Federal de São Carlos, 2011).

  • 88.

    Gregor, J. & Maršálek, B. Freshwater phytoplankton quantification by chlorophyll a: a comparative study of in vitro, in vivo and in situ methods. Water Res. 38, 517–522, https://doi.org/10.1016/j.watres.2003.10.033 (2004).

  • 89.

    Marker, A. F. H., Nush, E. A., Rai, H. & Riemann, B. The measurement of photosynthetic pigments in freshwaters and standardization of methods: conclusions and recommendations. Arch. für Hydrobiol. Ergebnisse der Limnol. 14, 91–106 (1980).

    • CAS
    • Google Scholar
  • 90.

    Jeffrey, S. W. T. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz BPP 167, 191–194, https://doi.org/10.1016/s0015-3796(17)30778-3 (1975).

  • 91.

    Manzzoni, R. & Fenerich-Verani, E. P. N. C. A pesca elétrica como técnica de amostragem de populações e comunidades de peixes em rios costeiros do sudeste do Brasil. Rev. Bras. Biol. 6, 205–216 (2000).

    • Article
    • Google Scholar
  • 92.

    Reynolds, L., Herlihy, A. T., Kaufmann, P. R., Gregory, S. V. & Hughes, R. M. Electrofishing Effort Requirements for Assessing Species Richness and Biotic Integrity in Western Oregon Streams. North Am. J. Fish. Manag. 23, 450–461 (2003).

    • Article
    • Google Scholar
  • 93.

    Pease, A. A., González-Díaz, A. A., Rodiles-Hernández, R. & Winemiller, K. O. Functional diversity and trait–environment relationships of stream fish assemblages in a large tropical catchment. Freshw. Biol. 57, 1060–1075, https://doi.org/10.1111/j.1365-2427.2012.02768.x (2012).

    • Article
    • Google Scholar
  • 94.

    Griffith, D. A. & Peres-Neto, P. R. Spatial Modeling in Ecology: The Flexibility of Eigenfunction Spatial Analyses. Ecology 87, 2603–2613, 10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2 (2006).

  • 95.

    Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography (Cop.). 30, 609–628, https://doi.org/10.1111/j.2007.0906-7590.05171.x (2007).

    • Article
    • Google Scholar
  • 96.

    Rangel, T. F., Diniz-Filho, J. A. F. & Bini, L. M. SAM: A comprehensive application for Spatial Analysis in Macroecology. Ecography (Cop.). 33, 46–50, https://doi.org/10.1111/j.1600-0587.2009.06299.x (2010).

    • Article
    • Google Scholar
  • 97.

    Clarke, K. R. & Ainsworth, M. A method of linking multivariate community structure to environmental variables. Mar. Ecol. Prog. Ser. 92, 205–219, https://doi.org/10.3354/meps092205 (1993).

  • 98.

    Oksanen, J. et al. Vegan: Community Ecology Package. https://cran.r-project.org, https://github.com/vegandevs/vegan (2019).

  • 99.

    Legendre, P. & Legendre, L. Numerical Ecology. Development in Environmental Modelling, 20, https://doi.org/10.1017/CBO9781107415324.004 (Elsevier Science B. V., 1998).

  • 100.

    Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87, 2614–2625, 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2 (2006).


  • Source: Ecology - nature.com

    Researchers develop a roadmap for growth of new solar cells

    Simple, solar-powered water desalination