in

Relationships Between Environmental Conditions And Fish Assemblages In Tropical Savanna Headwater Streams

  • 1.

    Gorman, O. T. & Karr, J. R. Habitat Structure and Stream Fish Communities. Ecology 59, 507–515 (1978).

    • Article
    • Google Scholar
  • 2.

    Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The River Continuum Concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).

    • Article
    • Google Scholar
  • 3.

    Penczak, T. Effects of removal and regeneration of bankside vegetation on fish population dynamics in the Warta River, Poland. Hydrobiologia 303, 207–210, https://doi.org/10.1007/BF00034057 (1995).

    • Article
    • Google Scholar
  • 4.

    Tejerina-Garro, F. L. et al. Effects of natural and anthropogenic environmental changes on riverine fish assemblages: A framework for ecological assessment of rivers. Brazilian Arch. Biol. Technol. 48, 91–108, https://doi.org/10.1590/S1516-89132005000100013 (2005).

    • Article
    • Google Scholar
  • 5.

    Rivaes, R. et al. Reducing river regulation effects on riparian vegetation using flushing flow regimes. Ecol. Eng. 81, 428–438 (2015).

    • Article
    • Google Scholar
  • 6.

    Teresa, F. B. & Romero, R. D. M. Influence of the riparian zone phytophysiognomies on the longitudinal distribution of fishes: evidence from a Brazilian savanna stream. Neotrop. Ichthyol. 8, 163–170, https://doi.org/10.1590/S1679-62252010000100019 (2010).

    • Article
    • Google Scholar
  • 7.

    Mendonça, F. P., Magnusson, W. E. & Zuanon, J. Relationships between Habitat Characteristics and Fish Assemblages in Small Streams of Central Amazonia. Copeia 2005, 751–764 (2005).

    • Article
    • Google Scholar
  • 8.

    Murray, S. & Innes, J. L. Effects of environment on fish species distributions in the Mackenzie River drainage basin of northeastern British Columbia, Canada. Ecol. Freshw. Fish 18, 183–196, https://doi.org/10.1111/j.1600-0633.2008.00336.x (2009).

    • Article
    • Google Scholar
  • 9.

    Warren, D. R., Mineau, M. M., Ward, E. J. & Kraft, C. E. Relating fish biomass to habitat and chemistry in headwater streams of the northeastern United States. Environ. Biol. Fishes 88, 51–62, https://doi.org/10.1007/s10641-010-9617-x (2010).

    • Article
    • Google Scholar
  • 10.

    Naiman, R. J., Décamps, H. & McClain, M. E. Riparia: Ecology, Conservation, and Management of Streamside Communities. (Elsevier Academic Press, 2005).

  • 11.

    Uieda, V. S., Uieda, W. & Paulista, U. E. Species composition and spatial distribution of a stream fish assemblage in the east coast of Brazil: comparison of two field study methodologies. Brazilian J. Biol. 61, 377–388, https://doi.org/10.1590/S1519-69842001000300006 (2001).

  • 12.

    Melo, A. S. & Froehlich, C. G. Colonization by macroinvertebrates of experimentally disturbed stones in three tropical streams differing in size. Int. Rev. Hydrobiol. 89, 317–325 (2004).

    • Article
    • Google Scholar
  • 13.

    Santos, G. M., Mérona, B. de, Juras, A. A. & Jégu, M. Peixes do Baixo Tocantins: 20 Anos depois da Usina Hidrelétrica de Tucuruí. (Eletronorte, 2004).

  • 14.

    Webster, J. R. & Meyer, J. L. Organic Matter Budgets for Streams: A Synthesis. J. North Am. Benthol. Soc. 16, 141–161, https://doi.org/10.2307/1468247 (1997).

    • Article
    • Google Scholar
  • 15.

    Montgomery, D. R. Process domains and the river continuum. J. Am. Water Resour. Assoc. 35, 397–410 (1999).

  • 16.

    Lowe-McConnell, R. H. Estudos ecológicos de comunidades de peixes tropicais. (Edusp – Editora da Universidade de São Paulo, 1999).

  • 17.

    Castro, R. M. C. & Casatti, L. The fish fauna from a small forest stream of the upper Parana River basin, southeastern Brazil. Ichtyol.Explor. Freshw. 7, 337–352, https://doi.org/10.1179/174329307X173706 (1997).

    • Article
    • Google Scholar
  • 18.

    Pusey, B. J. & Arthington, A. H. Importance of the riparian zone to conservation and management of freshwater fish: a review. Mar. Freshw. Res. 54, 1–16, https://doi.org/10.1071/MF02041 (2003).

    • Article
    • Google Scholar
  • 19.

    Knight, A. W. & Bottorff, R. L. The importance of riparian vegetation to stream ecosystems. in California Riparian Systems: Ecology, Conservation, and Production Management (eds Warner, R. E. & Hendrix, K. M.) 160–167 (University of California Press, 1984).

  • 20.

    Grubaugh, J. W., Wallace, J. B. & Houston, E. S. Longitudinal changes of macroinvertebrate communities along an Appalachian stream continuum. Can. J. Fish. Aquat. Sci. 53, 896–909 (1996).

    • Article
    • Google Scholar
  • 21.

    Braccia, A. & Voshell, R. Benthic Macroinvertebrate Fauna in Small Streams Used by Cattle in the Blue Ridge Mountains, Virginia. Northeast. Nat. 13, 269–286 (2006).

    • Article
    • Google Scholar
  • 22.

    Diniz-Filho, J. A. F., Bini, L. M. & Hawkins, B. A. Spatial autocorrelation and red herrings in geographical ecology. Glob. Ecol. Biogeogr. 12, 53–64 (2003).

    • Article
    • Google Scholar
  • 23.

    Dormann, F. C. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography (Cop.). 30, 609–628 (2007).

    • Article
    • Google Scholar
  • 24.

    Kühn, I. Incorporating spatial autocorrelation may invert observed patterns. Divers. Distrib. 13, 66–69, https://doi.org/10.1111/j.1472-4642.2006.00293.x (2007).

    • Article
    • Google Scholar
  • 25.

    Bini, L. M. et al. Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression. Ecography (Cop.). 32, 193–204 (2009).

    • Article
    • Google Scholar
  • 26.

    Lv, S. J. & Zhao, M. The dynamic complexity of a three species food chain model. Chaos Solitons & Fractals 37, 1469–1480 (2008).

  • 27.

    Legendre, P. & Legendre, L. Canonical analysis. In Developments in Environmental Modelling 20, https://doi.org/10.1016/B978-0-444-53868-0.50011-3 (Elsevier Science B. V., 2012).

    • Google Scholar
  • 28.

    Legendre, P. & Legendre, L. Ordination in reduced space. in Developments in Environmental Modelling 20, https://doi.org/10.1016/B978-0-444-53868-0.50009-5 (Elsevier Science B. V. 2012).

    • Google Scholar
  • 29.

    Thomas, G. H. et al. Regional variation in the historical components of global avian species richness. Glob. Ecol. Biogeogr. 17, 340–351 (2008).

    • Article
    • Google Scholar
  • 30.

    Das, M. K. et al. Influence of ecological factors on the patterns of fish species richness in tropical Indian rivers. Acta Ichthyol. Piscat. 42, 47–58, https://doi.org/10.3750/AIP2011.42.1.06 (2012).

    • Article
    • Google Scholar
  • 31.

    Davies, P. M., Bunn, S. E. & Hamilton, S. K. Primary Production in Tropical Streams and Rivers. In Tropical Stream Ecology (ed. Dudgeon, D.) 23–42, https://doi.org/10.1016/B978-012088449-0.50004-2 (Elsevier Inc., 2008).

    • Google Scholar
  • 32.

    Osborne, L. L. & Wiley, M. J. Influence of Tributary Spatial Position on the Structure of Warmwater Fish Communities. Can. J. Fish. Aquat. Sci. 49, 671–681, https://doi.org/10.1139/f92-076 (1992).

    • Article
    • Google Scholar
  • 33.

    Yan, Y. Z., Xiang, X., Chu, L., Zhan, Y. & Fu, C. Influences of local habitat and stream spatial position on fish assemblages in a dammed watershed, the Qingyi Stream, China. Ecol. Freshw. Fish 20, 199–208, https://doi.org/10.1111/j.1600-0633.2010.00478.x (2011).

    • Article
    • Google Scholar
  • 34.

    Dias, M. S. et al. Global imprint of historical connectivity on freshwater fish biodiversity. Ecol. Lett. 17, 1130–1140, https://doi.org/10.1111/ele.12319 (2014).

  • 35.

    Dong, X., Muneepeerakul, R., Olden, J. D. & Lytle, D. A. The effect of spatial configuration of habitat capacity on β diversity. Ecosphere 6, 220 (2015).

    • Article
    • Google Scholar
  • 36.

    Rosindell, J., Hubbell, S. P., He, F., Harmon, L. J. & Etienne, R. S. The case for ecological neutral theory. Trends in Ecology and Evolution 27, 203–208 (2012).

    • Article
    • Google Scholar
  • 37.

    Rodriguez-Iturbe, I., Muneepeerakul, R., Bertuzzo, E., Levin, S. A. & Rinaldo, A. River networks as ecological corridors: A complex systems perspective for integrating hydrologic, geomorphologic, and ecologic dynamics. Water Resour. Res. 45, 1–22, https://doi.org/10.1029/2008WR007124 (2009).

    • Article
    • Google Scholar
  • 38.

    Hanski, I., Foley, P. & Hassell, M. Random walks in a metapopulation: How much density dependence is necessary for long-term persistence? J. Anim. Ecol. 65, 274–282 (1996).

    • Article
    • Google Scholar
  • 39.

    Olden, J. D., Poff, N. L. & Bestgen, K. R. Life-history strategies predict fish invasions and extirpations in the Colorado River Basin. Ecol. Monogr. 76, 25–40 (2006).

    • Article
    • Google Scholar
  • 40.

    Cottenie, K. & De Meester, L. Metacommunity structure: Synergy of biotic interactions as selective agents and dispersal as fuel. Ecology 85, 114–119 (2004).

    • Article
    • Google Scholar
  • 41.

    Thompson, R. & Townsend, C. A truce with neutral theory: Local deterministic factors, species traits and dispersal limitation together determine patterns of diversity in stream invertebrates. J. Anim. Ecol. 75, 476–484 (2006).

    • Article
    • Google Scholar
  • 42.

    Macedo, D. R. et al. The relative influence of catchment and site variables on fish and macroinvertebrate richness in cerrado biome streams. Landsc. Ecol. 29, 1001–1016, https://doi.org/10.1007/s10980-014-0036-9 (2014).

    • Article
    • Google Scholar
  • 43.

    Leal, C. G. et al. Is environmental legislation conserving tropical stream faunas? A large-scale assessment of local, riparian and catchment-scale influences on Amazonian fish. J. Appl. Ecol. 55, 1312–1326, https://doi.org/10.1111/1365-2664.13028 (2018).

    • Article
    • Google Scholar
  • 44.

    Leitão, R. P. et al. Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography (Cop.). 41, 219–232, https://doi.org/10.1111/ecog.02845 (2018).

  • 45.

    de Carvalho, D. R. et al. A fish-based multimetric index for Brazilian savanna streams. Ecol. Indic. 77, 386–396, https://doi.org/10.1016/j.ecolind.2017.02.032 (2017).

    • Article
    • Google Scholar
  • 46.

    Bini, L. M. et al. Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression. Ecography (Cop.) 32, 193–204 (2009).

    • Article
    • Google Scholar
  • 47.

    Brea, M. & Zucol, A. F. Paraná-Paraguay Basin: A review of the geology and the plant fossil record. In Historical biogeography of Neotropical freshwater fishes. (eds. JS, A. & RE, R.) 69–87 (University of California Press, 2011).

  • 48.

    Jackson, C. R., Churchill, P. F. & Roden, E. E. Successional changes in bacterial assemblage structure during epilithic biofilm development. Ecology 82, 555–566 (2001).

    • Article
    • Google Scholar
  • 49.

    Oberdorff, T., Hugueny, B. & Vigneron, T. Is assemblage variability related to environmental variability? An answer for riverine fish. OIKOS 93, 419–428, https://doi.org/10.1034/j.1600-0706.2001.930307.x (2001).

    • Article
    • Google Scholar
  • 50.

    Väliverronen, E. Biodiversity and the power of metaphor in environmental discourse. Sci. Stud. (St. Bonaventure). 11, 19–34 (1998).

    • Google Scholar
  • 51.

    Hoeinghaus, D. J., Winemiller, K. O. & Birnbaum, J. S. Local and regional determinants of stream fish assemblage structure: inferences based on taxonomic vs. functional groups. J. Biogeogr. 34, 324–338 (2007).

    • Article
    • Google Scholar
  • 52.

    Fernandes, I. M., Henriques-Silva, R., Penha, J., Zuanon, J. & Peres-Neto, P. R. Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: The case of floodplain-fish communities. Ecography (Cop.). 37, 464–475, https://doi.org/10.1111/j.1600-0587.2013.00527.x (2014).

    • Article
    • Google Scholar
  • 53.

    Monroe, J. B., Baxter, C. V., Olden, J. D. & Angermeier, P. L. Freshwaters in the Public Eye: Understanding the Role of Images and Media in Aquatic Conservation. Fisheries 34, 581–585 (2009).

    • Article
    • Google Scholar
  • 54.

    Casatti, L., Langeani, F. & Ferreira, C. Effects of Physical Habitat Degradation on the Stream Fish Assemblage Structure in a Pasture Region. Environ. Manage. 38, 974–982, https://doi.org/10.1007/s00267-005-0212-4 (2006).

  • 55.

    Pinto, B., Araujo, F. & Hughes, R. Effects of Landscape and Riparian Condition on a Fish Index of Biotic Integrity in a Large Southeastern Brazil River. Hydrobiologia 556, 69–83, https://doi.org/10.1007/s10750-005-9009-y (2006).

    • Article
    • Google Scholar
  • 56.

    Rocha, F. C., Casatti, L., Carvalho, F. R. & Silva, A. M. Fish assemblages in stream stretches occupied by cattail (Typhaceae, Angiospermae) stands in Southeast Brazil. Neotropical Ichthyology 7, 241–250, https://doi.org/10.1590/S1679-62252009000200016 (2009).

    • Article
    • Google Scholar
  • 57.

    Alexandre, C. V., Esteves, K. E. & de Moura e Mello, M. A. M. M. Analysis of fish communities along a rural-urban gradient in a neotropical stream (Piracicaba River Basin, São Paulo, Brazil). Hydrobiologia 641, 97–114, https://doi.org/10.1007/s10750-009-0060-y (2010).

  • 58.

    Silva, A. G. & Martinez, C. B. R. Morphological changes in the kidney of a fish living in an urban stream. Environ. Toxicol. Pharmacol. 23, 185–192, https://doi.org/10.1016/j.etap.2006.08.009 (2007).

  • 59.

    Ferreira, A., Hahn, N. S. & Delariva., R. L. Ecologia alimentar de Piabina argentea (Teleostei, Tetragonopterinae) nas fases de pré e pós-represamento do rio Corumbá, GO. Acta Limnologica Brasiliensia 14, 43–52 (2002).

    • Google Scholar
  • 60.

    Takahashi, E. L. H., Rosa, F. R. T., Langeani, F. & Nakaghi, L. S. O. Spatial and seasonal patterns in fish assemblage in Córrego Rico, upper Paraná River basin. Neotrop. Ichthyol. 11, 143–152, https://doi.org/10.1590/S1679-62252013000100017 (2013).

    • Article
    • Google Scholar
  • 61.

    Schulz, U. H. & Martins-Junior, H. Astyanax fasciatus as bioindicator of water pollution of Rio dos Sinos, RS, Brazil. Braz. J. Biol. 61, 615–622, https://doi.org/10.1590/S1519-69842001000400010 (2001).

  • 62.

    Melo, F. C. S. Ade, Maldonado, I. RdosS. C., Benjamin, LdosA. & Matta, S. L. Pda Biologia reprodutiva de fêmeas de Lambari-prata (Astyanax scabripinnis) (Characidae, Tetragonopterinae) em tanques de piscicultura. Rev Ceres 52, 811–829 (2005).

    • Google Scholar
  • 63.

    Carvalho, F. M. V., De Marco, P. & Ferreira, L. G. The Cerrado into-pieces: Habitat fragmentation as a function of landscape use in the savannas of central Brazil. Biol. Conserv. 142, 1392–1403 (2009).

    • Article
    • Google Scholar
  • 64.

    Bischoff, R. J., Gould, J. L. & Rubenstein, D. I. Tail size and female choice in the guppy (Poecilia reticulata). Behav. Ecol. Sociobiol. 17, 253–255, https://doi.org/10.1007/BF00300143 (1985).

    • Article
    • Google Scholar
  • 65.

    Dzikowski, R., Hulata, G., Karplus, I. & Harpaz, S. Effect of temperature and dietary L-carnitine supplementation on reproductive performance of female guppy (Poecilia reticulata). Aquaculture 199, 323–332, https://doi.org/10.1016/S0044-8486(01)00561-0 (2001).

  • 66.

    Weetman, D., Atkinson, D. & Chubb, J. C. Effects of temperature on anti-predator behaviour in the guppy, Poecilia reticulata. Anim. Behav. 55, 1361–1372, https://doi.org/10.1006/anbe.1997.0666 (1998).

  • 67.

    Kramer, D. L. & Mehegan, J. P. Aquatic surface respiration, an adaptive response to hypoxia in the guppy, Poecilia reticulata (Pisces, Poeciliidae). Environ. Biol. Fishes 6, 299–313, https://doi.org/10.1007/BF00005759 (1981).

    • Article
    • Google Scholar
  • 68.

    Fialho, A. P., Oliveira, L. G., Tejerina-Garro, F. L. & De Mérona, B. Fish-habitat relationship in a tropical river under anthropogenic influences. Hydrobiologia 598, 315–324, https://doi.org/10.1007/s10750-007-9165-3 (2008).

  • 69.

    MacKenzie, R. A. Impacts of riparian forest removal on Palauan streams. Biotropica 40, 666–675, https://doi.org/10.1111/j.1744-7429.2008.00433.x (2008).

    • Article
    • Google Scholar
  • 70.

    Etheridge, E. C., Harrod, C., Bean, C. W. & Adams, C. E. Has habitat heterogeneity promoted phenotypic and ecological sub-structuring among a Coregonus lavaretus population in a large Scottish lake? J. Fish Biol. 77, 2391–2404, https://doi.org/10.1111/j.1095-8649.2010.02827.x (2010).

  • 71.

    Lowrance, R. et al. Riparian Forests as Nutrient Filters in Agricultural Watersheds. Bioscience 34, 374–377, https://doi.org/10.2307/1309729 (1984).

    • Article
    • Google Scholar
  • 72.

    Detenbeck, N. E., Devore, P. W., Niemi, G. J. & Lima, A. Recovery of temperate-stream fish communities from disturbance – a review of case studies and synthesis of theory. Environ. Manage. 16, 33–53 (1992).

  • 73.

    Armour, C. L., Duff, D. A. & Elmore, W. The effects of livestock grazing on riparian and stream ecosystems. Am. Fish. Soc. 16, 7–12, 10.1577/1548-8446(1994)019<0009:TEOLGO>2.0.CO;2 (1991).

  • 74.

    Allan, J. D. & Flecker, A. S. Biodiversity Conservation in Running Waters. Bioscience 43, 32–43, https://doi.org/10.2307/1312104 (1993).

    • Article
    • Google Scholar
  • 75.

    Matlack, G. R. Vegetation dynamics of forest edge-trends in space and sucession time. J. Ecol. 82, 113–123 (1994).

    • Article
    • Google Scholar
  • 76.

    Cummins, K. W. et al. Organic matter budgets for stream ecosystems: Problems in their evaluation. in Stream ecology: Application and Testing of General Ecological Theory. (eds. Barnes, J. R. & Minshall, G. W.) 299–353 (Plenum Press, 1983).

  • 77.

    Sazima, M. & Sazima, I. Oil gathering bees visit flowers of eglandular morphs of the oil-producing Malpighiaceae. Bot. Acta 102, 106–111 (1989).

    • Article
    • Google Scholar
  • 78.

    Garavello, J. C. & Britski, H. A. Family Anostomidae (Headstanders). in Check List of the Freshwater Fishes of South and Central America. (eds. Reis, R. E., Kullander, S. O. & Ferraris Jr., C. J.) 71–84 (Editora da Pontifícia Universidade Católica do Rio Grande do Sul, 2003).

  • 79.

    Webster, J. R. & Benfield, E. F. Vascular plant breakdown in freshwater ecosystems. Annu. Rev. Ecol. Syst. 17, 567–594, https://doi.org/10.1146/annurev.es.17.110186.003031 (1986).

    • Article
    • Google Scholar
  • 80.

    Valério, S. B., Súarez, Y. R., Felipe, T. R. A., Tondato, K. K. & Ximenes, L. Q. L. Organization patterns of headwater-stream fish communities in the Upper Paraguay–Paraná basins. Hydrobiologia 583, 241–250, https://doi.org/10.1007/s10750-006-0533-1 (2007).

    • Article
    • Google Scholar
  • 81.

    Sazima, I. Similarities in feeding behaviour between some marine and freshwater fishes in two tropical communities. J. Fish Biol. 29, 53–65, https://doi.org/10.1111/j.1095-8649.1986.tb04926.x (1986).

    • Article
    • Google Scholar
  • 82.

    de Araujo, R. B. & Garutti, V. Ecology of a stream from upper Paraná River basin inhabited by Aspidoras fuscoguttatus Nijssen & Isbrücker, 1976 (Siluriformes, Callichthyidae). Braz. J. Biol. 63, 363–372 (2003).

    • Article
    • Google Scholar
  • 83.

    Brandão-Gonçalves, L., Lima-Júnior, S. E. & Suarez, Y. R. Hábitos alimentares de Bryconamericus stramineus Eigenmann, 1908 (Characidae), em diferentes riachos da sub-bacia do Rio Guiraí, Mato Grosso do Sul, Brasil. Biota Neotrop, https://doi.org/10.1590/S1676-06032009000100016 (2009).

    • Article
    • Google Scholar
  • 84.

    Vasconcelos, L. P., Súarez, Y. R. & Lima-Junior, S. E. Population aspects of Bryconamericus stramineus in streams of the upper Paraná River basin, Brazil. Biota Neotrop. 11, 55–62, https://doi.org/10.1590/S1676-06032011000200006 (2011).

    • Article
    • Google Scholar
  • 85.

    Felipe, T. R. A. & Súarez, Y. R. Caracterização e influência dos fatores ambientais nas assembléias de peixes de riachos em duas microbacias urbanas, Alto Rio Paraná. Biota Neotrop. 10, 143–151, https://doi.org/10.1590/S1676-06032010000200018 (2010).

    • Article
    • Google Scholar
  • 86.

    Casatti, L. et al. From forests to cattail: how does the riparian zone influence stream fish? Neotrop. Ichthyol. 10, 205–214, https://doi.org/10.1590/S1679-62252012000100020 (2012).

    • Article
    • Google Scholar
  • 87.

    Melo, T. L. de. Avaliação espacial das variáveis ambientais e da estrutura trófica da ictiofauna de tributários da bacia Tocantins-Araguaia, Brasil Central. Centro de Ciências Biológicas e da Saúde Ph D, (Universidade Federal de São Carlos, 2011).

  • 88.

    Gregor, J. & Maršálek, B. Freshwater phytoplankton quantification by chlorophyll a: a comparative study of in vitro, in vivo and in situ methods. Water Res. 38, 517–522, https://doi.org/10.1016/j.watres.2003.10.033 (2004).

  • 89.

    Marker, A. F. H., Nush, E. A., Rai, H. & Riemann, B. The measurement of photosynthetic pigments in freshwaters and standardization of methods: conclusions and recommendations. Arch. für Hydrobiol. Ergebnisse der Limnol. 14, 91–106 (1980).

    • CAS
    • Google Scholar
  • 90.

    Jeffrey, S. W. T. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz BPP 167, 191–194, https://doi.org/10.1016/s0015-3796(17)30778-3 (1975).

  • 91.

    Manzzoni, R. & Fenerich-Verani, E. P. N. C. A pesca elétrica como técnica de amostragem de populações e comunidades de peixes em rios costeiros do sudeste do Brasil. Rev. Bras. Biol. 6, 205–216 (2000).

    • Article
    • Google Scholar
  • 92.

    Reynolds, L., Herlihy, A. T., Kaufmann, P. R., Gregory, S. V. & Hughes, R. M. Electrofishing Effort Requirements for Assessing Species Richness and Biotic Integrity in Western Oregon Streams. North Am. J. Fish. Manag. 23, 450–461 (2003).

    • Article
    • Google Scholar
  • 93.

    Pease, A. A., González-Díaz, A. A., Rodiles-Hernández, R. & Winemiller, K. O. Functional diversity and trait–environment relationships of stream fish assemblages in a large tropical catchment. Freshw. Biol. 57, 1060–1075, https://doi.org/10.1111/j.1365-2427.2012.02768.x (2012).

    • Article
    • Google Scholar
  • 94.

    Griffith, D. A. & Peres-Neto, P. R. Spatial Modeling in Ecology: The Flexibility of Eigenfunction Spatial Analyses. Ecology 87, 2603–2613, 10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2 (2006).

  • 95.

    Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography (Cop.). 30, 609–628, https://doi.org/10.1111/j.2007.0906-7590.05171.x (2007).

    • Article
    • Google Scholar
  • 96.

    Rangel, T. F., Diniz-Filho, J. A. F. & Bini, L. M. SAM: A comprehensive application for Spatial Analysis in Macroecology. Ecography (Cop.). 33, 46–50, https://doi.org/10.1111/j.1600-0587.2009.06299.x (2010).

    • Article
    • Google Scholar
  • 97.

    Clarke, K. R. & Ainsworth, M. A method of linking multivariate community structure to environmental variables. Mar. Ecol. Prog. Ser. 92, 205–219, https://doi.org/10.3354/meps092205 (1993).

  • 98.

    Oksanen, J. et al. Vegan: Community Ecology Package. https://cran.r-project.org, https://github.com/vegandevs/vegan (2019).

  • 99.

    Legendre, P. & Legendre, L. Numerical Ecology. Development in Environmental Modelling, 20, https://doi.org/10.1017/CBO9781107415324.004 (Elsevier Science B. V., 1998).

  • 100.

    Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87, 2614–2625, 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2 (2006).


  • Source: Ecology - nature.com

    Mint companion plants enhance the attraction of the generalist predator Nesidiocoris tenuis according to its experiences of conspecific mint volatiles

    Stereochemistry of two pheromonal components of the bumblebee wax moth, Aphomia sociella