
Stone, R. Arsenic and paddy rice: a neglected cancer risk? Science 321, 184–185 (2008).
Ma, J. F. et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc. Natl Acad. Sci. 105, 9931–9935 (2008).
Wang, P., Zhang, W., Mao, C., Xu, G. & Zhao, F.-J. The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice. J. Exp. Bot. 67, 6051–6059 (2016).
Ye, Y. et al. OsPT4 contributes to arsenate uptake and transport in rice. Front. Plant Sci. 8, 2197 (2017).
Xu, X. Y., McGrath, S. P., Meharg, A. A. & Zhao, F. J. Growing rice aerobically markedly decreases arsenic accumulation. Environ. Sci. Technol. 42, 5574–5579 (2008).
Jia, Y. et al. Microbial arsenic methylation in soil and rice rhizosphere. Environ. Sci. Technol. 47, 3141–3148 (2013).
Lomax, C. et al. Methylated arsenic species in plants originate from soil microorganisms. N. Phytol. 193, 665–672 (2012).
Zhao, F.-J., Zhu, Y.-G. & Meharg, A. A. Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms. Environ. Sci. Technol. 47, 3957–3966 (2013).
Meharg, A. A. & Zhao, F.-J. (eds) in Arsenic & Rice 71–101 (Springer, 2012).
Besold, J. et al. Monothioarsenate transformation kinetics determining arsenic sequestration by sulfhydryl groups of peat. Environ. Sci. Technol. 52, 7317–7326 (2018).
Wallschläger, D. & London, J. Determination of methylated arsenic–sulfur compounds in groundwater. Environ. Sci. Technol. 42, 228–234 (2007).
Conklin, S. D., Fricke, M. W., Creed, P. A. & Creed, J. T. Investigation of the pH effects on the formation of methylated thio-arsenicals, and the effects of pH and temperature on their stability. J. Anal. At. Spectrom. 23, 711–716 (2008).
Planer-Friedrich, B., London, J., McCleskey, R. B., Nordstrom, D. K. & Wallschläger, D. Thioarsenates in geothermal waters of Yellowstone National Park: determination, preservation, and geochemical importance. Environ. Sci. Technol. 41, 5245–5251 (2007).
Planer-Friedrich, B., Schaller, J., Wismeth, F., Mehlhorn, J. & Hug, S. J. Monothioarsenate occurrence in Bangladesh groundwater and its removal by ferrous and zero-valent iron technologies. Environ. Sci. Technol. 52, 5931–5939 (2018).
Planer-Friedrich, B. & Wallschläger, D. A critical investigation of hydride generation-based arsenic speciation in sulfidic waters. Environ. Sci. Technol. 43, 5007–5013 (2009).
Smieja, J. A. & Wilkin, R. T. Preservation of sulfidic waters containing dissolved As(III). J. Environ. Monit. 5, 913–916 (2003).
Kögel-Knabner, I. et al. Biogeochemistry of paddy soils. Geoderma 157, 1–14 (2010).
Wind, T. & Conrad, R. Localization of sulfate reduction in planted and unplanted rice field soil. Biogeochemistry 37, 253–278 (1997).
Ayotade, K. A. Kinetics and reactions of hydrogen sulphide in solution of flooded rice soils. Plant Soil 46, 381–389 (1977).
Saalfield, S. L. & Bostick, B. C. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems. Environ. Sci. Technol. 43, 8787–8793 (2009).
Burton, E. D., Johnston, S. G. & Kocar, B. D. Arsenic mobility during flooding of contaminated soil: the effect of microbial sulfate reduction. Environ. Sci. Technol. 48, 13660–13667 (2014).
Xu, L. Y. et al. Speciation change and redistribution of arsenic in soil under anaerobic microbial activities. J. Hazard. Mater. 301, 538–546 (2016).
Crusciol, C. A. C., Nascente, A. S., Soratto, R. P. & Rosolem, C. A. Upland rice growth and mineral nutrition as affected by cultivars and sulfur availability. Soil Sci. Soc. Am. J. 77, 328–335 (2013).
Schütz, H., Holzapfel-Pschorn, A., Conrad, R., Rennenberg, H. & Seiler, W. A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J. Geophys. Res. Atmos. 94, 16405–16416 (1989).
Minamikawa, K., Sakai, N. & Hayashi, H. The effects of ammonium sulfate application on methane emission and soil carbon content of a paddy field in Japan. Agric. Ecosyst. Environ. 107, 371–379 (2005).
Fan, J., Xia, X., Hu, Z., Ziadi, N. & Liu, C. Excessive sulfur supply reduces arsenic accumulation in brown rice. Plant Soil Environ. 59, 169–174 (2013).
Zhang, J. et al. Influence of sulfur on transcription of genes involved in arsenic accumulation in rice grains. Plant Mol. Biol. Report. 34, 556–565 (2016).
Jia, Y. & Bao, P. Arsenic bioavailability to rice plant in paddy soil: influence of microbial sulfate reduction. J. Soil. Sediment. 15, 1960–1967 (2015).
Zeng, X. et al. Effects of sulfate application on inhibiting accumulation and alleviating toxicity of arsenic in panax notoginseng grown in arsenic-polluted soil. Water Air Soil Poll. 227, 148 (2016).
Baker, M., Inniss, W., Mayfield, C., Wong, P. & Chau, Y. Effect of pH on the methylation of mercury and arsenic by sediment microorganisms. Environ. Technol. Lett. 4, 89–100 (1983).
Cullen, W. R. et al. Methylated and thiolated arsenic species for environmental and health research—a review on synthesis and characterization. J. Environ. Sci. 49, 7–27 (2016).
Kim, Y.-T., Lee, H., Yoon, H.-O. & Woo, N. C. Kinetics of dimethylated thioarsenicals and the formation of highly toxic dimethylmonothioarsinic acid in environment. Environ. Sci. Technol. 50, 11637–11645 (2016).
Kerl, C. F., Rafferty, C., Clemens, S. & Planer-Friedrich, B. Monothioarsenate uptake, transformation, and translocation in rice plants. Environ. Sci. Technol. 52, 9154–9161 (2018).
Kerl, C. F. et al. Methylated thioarsenates and monothioarsenate differ in uptake, transformation, and contribution to total arsenic translocation in rice plants. Environ. Sci. Technol. 53, 5787–5796 (2019).
Ackerman, A. H. et al. Comparison of a chemical and enzymatic extraction of arsenic from rice and an assessment of the arsenic absorption from contaminated water by cooked rice. Environ. Sci. Technol. 39, 5241–5246 (2005).
Ayotade, K. A. Kinetics and reactions of hydrogen-sulfide in solution of flooded rice soils. Plant Soil 46, 381–389 (1977).
Tang, L., Yang, J. & Shen, X. Effects of additional iron-chelators on Fe 2+-initiated lipid peroxidation: evidence to support the Fe 2+… Fe 3+ complex as the initiator. J. Inorg. Biochem. 68, 265–272 (1997).
Colman, B. P. Understanding and eliminating iron interference in colorimetric nitrate and nitrite analysis. Environ. Monit. Assess. 165, 633–641 (2010).
Suess, E., Wallschläger, D. & Planer-Friedrich, B. Stabilization of thioarsenates in iron-rich waters. Chemosphere 83, 1524–1531 (2011).
Zang, V. & Van Eldik, R. Kinetics and mechanism of the autoxidation of iron (II) induced through chelation by ethylenediaminetetraacetate and related ligands. Inorg. Chem. 29, 1705–1711 (1990).
Suess, E. et al. Discrimination of thioarsenites and thioarsenates by X-ray absorption spectroscopy. Anal. Chem. 81, 8318–8326 (2009).
Ministry of Ecology and Environment of the People’s Republic of China Soil Environment Quality Risk Control Standard for Soil Contamination of Agricultural Land GB 15618-2018 (Ministry of Ecology and Environment, 2018).
Zhao, F.-J., Ma, Y., Zhu, Y.-G., Tang, Z. & McGrath, S. P. Soil contamination in China: current status and mitigation strategies. Environ. Sci. Technol. 49, 750–759 (2014).
Ratering, S. & Schnell, S. Localization of iron-reducing activity in paddy soil by profile studies. Biogeochemistry 48, 341–365 (2000).
Stroud, J. L. et al. Assessing the labile arsenic pool in contaminated paddy soils by isotopic dilution techniques and simple extractions. Environ. Sci. Technol. 45, 4262–4269 (2011).
Zhang, S.-Y. et al. Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China. Environ. Sci. Technol. 49, 4138–4146 (2015).
Zhao, F.-J. et al. Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and As speciation in rice. Environ. Sci. Technol. 47, 7147–7154 (2013).
Stookey, L. L. Ferrozine—a new spectrophotometric reagent for iron. Anal. Chem. 42, 779–781 (1970).
Lohmayer, R., Kappler, A., Lösekann-Behrens, T. & Planer-Friedrich, B. Sulfur species as redox partners and electron shuttles for ferrihydrite reduction by Sulfurospirillum deleyianum. Appl. Environ. Microb. 80, 3141–3149 (2014).
Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2006).
De’Ath, G. Multivariate regression trees: a new technique for modeling species–environment relationships. Ecology 83, 1105–1117 (2002).
Source: Ecology - nature.com