in

Indiscriminate data aggregation in ecological meta-analysis underestimates impacts of invasive species

  • 1.

    Anton, A. et al. Global ecological impacts of marine exotic species. Nat. Ecol. Evol. 3, 787–800 (2019).

    • Article
    • Google Scholar
  • 2.

    Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).

  • 3.

    Borenstein, M., Hedges, L. V., Higgins, J. P. & Rothstein, H. R. Introduction to Meta-Analysis (John Wiley & Sons, 2011).

  • 4.

    Thomsen, M. S., Wernberg, T., Tuya, F. & Silliman, B. R. Evidence for impacts of nonindigenous macroalgae: a meta-analysis of experimental field studies. J. Phycol. 45, 812–819 (2009).

    • Article
    • Google Scholar
  • 5.

    Thomsen, M. S. et al. Impacts of marine invaders on biodiversity depend on trophic position and functional similarity. Mar. Ecol. Prog. Ser. 495, 39–47 (2014).

    • Article
    • Google Scholar
  • 6.

    Maggi, E. et al. Ecological impacts of invading seaweeds: a meta‐analysis of their effects at different trophic levels. Diversity Distrib. 21, 1–12 (2015).

    • Article
    • Google Scholar
  • 7.

    Gallardo, B., Clavero, M., Sánchez, M. I. & Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Change Biol. 22, 151–163 (2016).

    • Article
    • Google Scholar
  • 8.

    Hu, Z.-M. & Juan, L.-B. Adaptation mechanisms and ecological consequences of seaweed invasions: a review case of agarophyte Gracilaria vermiculophylla. Biol. Invasions 16, 967–976 (2014).

    • Article
    • Google Scholar
  • 9.

    Thomsen, M. S., Ramus, A. P., Long, Z. T. & Silliman, B. R. A seaweed increases ecosystem multifunctionality when invading bare mudflats. Biol. Invasions 21, 27–36 (2019).

    • Article
    • Google Scholar
  • 10.

    Martínez-Lüscher, J. & Holmer, M. Potential effects of the invasive species Gracilaria vermiculophylla on Zostera marina metabolism and survival. Mar. Environ. Res. 69, 345–349 (2010).

    • Article
    • Google Scholar
  • 11.

    Ramus, A. P., Silliman, B. R., Thomsen, M. S. & Long, Z. T. An invasive foundation species enhances multifunctionality in a coastal ecosystem. Proc. Natl Acad. Sci. USA 114, 8580–8585 (2017).

  • 12.

    Lyons, D. A. et al. Macroalgal blooms alter community structure and primary productivity in marine ecosystems. Glob. Change Biol. 20, 2712–2724 (2014).

    • Article
    • Google Scholar
  • 13.

    Thomsen, M. S. & Wernberg, T. The devil in the detail: harmful seaweeds are not harmful to everyone. Glob. Change Biol. 21, 1381–1382 (2015).

    • Article
    • Google Scholar
  • 14.

    Lyons, D. et al. There are no whole truths in meta-analyses: all their truths are half-truths. Glob. Change Biol. 22, 968–971 (2016).

    • Article
    • Google Scholar
  • 15.

    Thomsen, M. S., Wernberg, T., South, P. M. & Schiel, D. R. To include or not to include (the invader in community analyses)? That is the question. Biol. Invasions 18, 1515–1521 (2016).

    • Article
    • Google Scholar
  • 16.

    Thomsen, M. S., Wernberg, T., South, P. M. & Schiel, D. R. in Seaweed Phylogeography (eds Hu, Z. M. & Fraser, C.) 147–185 (Springer, 2016).

  • 17.

    South, P. M. et al. Transient effects of an invasive kelp on the community structure and primary productivity of an intertidal assemblage. Mar. Freshw. Res. 67, 103–112 (2016).

    • Article
    • Google Scholar
  • 18.

    Anton, A. et al. Global ecological impacts of marine exotic species. PANGAEA https://doi.org/10.1594/PANGAEA.895681 (2019).

  • 19.

    Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211 (1984).

    • Article
    • Google Scholar
  • 20.

    Sol, D., Vila, M. & Kühn, I. The comparative analysis of historical alien introductions. Biol. Invasions 10, 1119–1129 (2008).

    • Article
    • Google Scholar
  • 21.

    Kumschick, S. et al. Ecological impacts of alien species: quantification, scope, caveats, and recommendations. Bioscience 65, 55–63 (2014).

    • Article
    • Google Scholar
  • 22.

    Kochmann, J., Buschbaum, C., Volkenborn, N. & Reise, K. Shift from native mussels to alien oysters: differential effects of ecosystem engineers. J. Exp. Mar. Biol. Ecol. 364, 1–10 (2008).

    • Article
    • Google Scholar
  • 23.

    Ruesink, J. L. et al. Introduction of non-native oysters: ecosystem effects and restoration implications. Annu. Rev. Ecol. Evol. Syst. 36, 643–689 (2005).

    • Article
    • Google Scholar
  • 24.

    Bateman, D. C. & Bishop, M. J. The environmental context and traits of habitat-forming bivalves influence the magnitude of their ecosystem engineering. Mar. Ecol. Prog. Ser. 563, 95–110 (2017).

    • Article
    • Google Scholar
  • 25.

    Schwindt, E., Bortolus, A. & Iribarne, O. O. Invasion of a reef-builder polychaete: direct and indirect impacts on the native benthic community structure. Biol. Invasions 3, 137–149 (2001).

    • Article
    • Google Scholar
  • 26.

    Wang, Q. et al. Invasive Spartina alterniflora: biology, ecology and management. Acta Phytotaxon. Sin. 44, 559–588 (2006).

    • Article
    • Google Scholar
  • 27.

    Thomsen, M. S. et al. A meta-analysis of seaweed impacts on seagrasses: generalities and knowledge gaps. PLoS ONE 7, e28595 (2012).

  • 28.

    Romero, G. Q., Gonçalves‐Souza, T., Vieira, C. & Koricheva, J. Ecosystem engineering effects on species diversity across ecosystems: a meta‐analysis. Biol. Rev. 90, 877–890 (2015).

    • Article
    • Google Scholar
  • 29.

    Guy‐Haim, T. et al. Diverse effects of invasive ecosystem engineers on marine biodiversity and ecosystem functions: A global review and meta‐analysis. Glob. Change Biol. 24, 906–924 (2018).

    • Article
    • Google Scholar
  • 30.

    Thomsen, M. S. et al. Secondary foundation species enhance biodiversity. Nat. Ecol. Evol. 2, 634–639 (2018).

    • Article
    • Google Scholar
  • 31.

    Wallace, B. C. et al. Open MEE: Intuitive, open‐source software for meta‐analysis in ecology and evolutionary biology. Methods Ecol. Evol. 8, 941–947 (2017).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Helping to support threatened marine life

    Open Science principles for accelerating trait-based science across the Tree of Life