in

Open Science principles for accelerating trait-based science across the Tree of Life

  • 1.

    Adler, P. B. et al. Functional traits explain variation in plant life history strategies. Proc. Natl Acad. Sci. USA 111, 740–745 (2014).

  • 2.

    Chapin, F. S. III, Autumn, K. & Pugnaire, F. Evolution of suites of traits in response to environmental stress. Am. Nat. 142, S78–S92 (1993).

    • Article
    • Google Scholar
  • 3.

    Chown, S. L. & Gaston, K. J. Macrophysiology–progress and prospects. Funct. Ecol. 30, 330–344 (2016).

    • Article
    • Google Scholar
  • 4.

    Kooijman, S. A. L. M. Dynamic Energy and Mass Budgets in Biological Systems (Cambridge Univ. Press, 2000).

  • 5.

    Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).

    • Article
    • Google Scholar
  • 6.

    Harmon, L. J. et al. Early bursts of body size and shape evolution are rare in comparative data. Evolution 64, 2385–2396 (2010).

    • Google Scholar
  • 7.

    Sauquet, H. & Magallón, S. Key questions and challenges in angiosperm macroevolution. New Phytol. 219, 1170–1187 (2018).

  • 8.

    Sneath, P. H. & Sokal, R. R. Numerical Taxonomy: The Principles and Practice of Numerical Classification (W. H. Freeman & Co, 1973).

  • 9.

    Edmunds, R. C. et al. Phenoscape: identifying candidate genes for evolutionary phenotypes. Mol. Biol. Evol. 33, 13–24 (2015).

  • 10.

    Mungall, C. J. et al. The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res. 45, D712–D722 (2016).

  • 11.

    Gkoutos, G. V., Schofield, P. N. & Hoehndorf, R. The anatomy of phenotype ontologies: principles, properties and applications. Brief. Bioinform. 19, 1008–1021 (2017).

  • 12.

    Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).

    • Article
    • Google Scholar
  • 13.

    Kiørboe, T., Visser, A. & Andersen, K. H. A trait-based approach to ocean ecology. ICES J. Mar. Sci. 75, 1849–1863 (2018).

    • Article
    • Google Scholar
  • 14.

    Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).

  • 15.

    Laughlin, D. C. Nitrification is linked to dominant leaf traits rather than functional diversity. J. Ecol. 99, 1091–1099 (2011).

    • Article
    • Google Scholar
  • 16.

    Finegan, B. et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J. Ecol. 103, 191–201 (2015).

    • Article
    • Google Scholar
  • 17.

    Laigle, I. et al. Species traits as drivers of food web structure. Oikos 127, 316–326 (2018).

    • Article
    • Google Scholar
  • 18.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    • Article
    • Google Scholar
  • 19.

    West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).

  • 20.

    Iversen, C. M. et al. A global Fine‐Root Ecology Database to address below‐ground challenges in plant ecology. New Phytol. 215, 15–26 (2017).

  • 21.

    Kattge, J. et al. TRY–a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

    • Article
    • Google Scholar
  • 22.

    Bernhardt‐Römermann, M., Poschlod, P. & Hentschel, J. BryForTrait–A life‐history trait database of forest bryophytes. J. Veg. Sci. 29, 798–800 (2018).

    • Article
    • Google Scholar
  • 23.

    Bennett, J. M. et al. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 (2018).

  • 24.

    Meiri, S. Traits of lizards of the world: variation around a successful evolutionary design. Glob. Ecol. Biogeogr. 27, 1168–1172 (2018).

    • Article
    • Google Scholar
  • 25.

    Myhrvold, N. P. et al. An amniote life‐history database to perform comparative analyses with birds, mammals, and reptiles. Ecology 96, 3109–3109 (2015).

    • Article
    • Google Scholar
  • 26.

    Schäfer, R. B. et al. A trait database of stream invertebrates for the ecological risk assessment of single and combined effects of salinity and pesticides in South-East Australia. Sci. Total Environ. 409, 2055–2063 (2011).

  • 27.

    Bland, L. Global correlates of extinction risk in freshwater crayfish. Animal Conserv. 20, 532–542 (2017).

    • Article
    • Google Scholar
  • 28.

    Brun, P., Payne, M. R. & Kiørboe, T. A trait database for marine copepods. Earth Syst. Sci. Data 9, 99–113 (2017).

    • Article
    • Google Scholar
  • 29.

    Parr, C. L. et al. GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv. Divers. 10, 5–20 (2017).

    • Article
    • Google Scholar
  • 30.

    Froese, R. & Pauly, D. Progress Report on FishBase (Fisheries Centre, University of British Columbia, 2010).

  • 31.

    Frimpong, E. A. & Angermeier, P. L. Fish traits: a database of ecological and life-history traits of freshwater fishes of the United States. Fisheries 34, 487–495 (2009).

    • Article
    • Google Scholar
  • 32.

    Madin, J. S. et al. The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Sci. Data 3, 160017 (2016).

  • 33.

    Garnett, S. T. et al. Biological, ecological, conservation and legal information for all species and subspecies of Australian bird. Sci. Data 2, 150061 (2015).

  • 34.

    Wilman, H. et al. EltonTraits 1.0: species‐level foraging attributes of the world’s birds and mammals: Ecological Archives E095‐178. Ecology 95, 2027 (2014).

    • Article
    • Google Scholar
  • 35.

    Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).

  • 36.

    Jones, K. E. et al. PanTHERIA: a species‐level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648 (2009).

    • Article
    • Google Scholar
  • 37.

    Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626 (2018).

  • 38.

    Galán-Acedo, C., Arroyo-Rodríguez, V., Andresen, E. & Arasa-Gisbert, R. Ecological traits of the world’s primates. Sci. Data 6, 55 (2019).

  • 39.

    Cornwell, W. fungaltraits aka funfun: a dynamic functional trait database for the world’s fungi. https://github.com/traitecoevo/fungaltraits (2017).

  • 40.

    Sholler, D., Ram, K., Boettiger, C. & Katz, D. S. Enforcing public data archiving policies in academic publishing: A study of ecology journals. Big Data Soc. 6, 2053951719836258 (2019).

    • Article
    • Google Scholar
  • 41.

    Fegraus, E. H., Andelman, S., Jones, M. B. & Schildhauer, M. Maximizing the value of ecological data with structured metadata: an introduction to Ecological Metadata Language (EML) and principles for metadata creation. Bull. Ecol. Soc. Am. 86, 158–168 (2005).

    • Article
    • Google Scholar
  • 42.

    Parker, T. H. et al. Transparency in ecology and evolution: real problems, real solutions. Trends Ecol. Evol. 31, 711–719 (2016).

  • 43.

    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).

    • Article
    • Google Scholar
  • 44.

    Cornwell, W. K., Pearse, W. D., Dalrymple, R. L. & Zanne, A. E. What we (don’t) know about global plant diversity. Ecography 42, 1819–1831 (2019).

    • Article
    • Google Scholar
  • 45.

    Stodden, V., Seiler, J. & Ma, Z. An empirical analysis of journal policy effectiveness for computational reproducibility. Proc. Natl Acad. Sci. USA 115, 2584–2589 (2018).

  • 46.

    Lowndes, J. S. S. et al. Our path to better science in less time using open data science tools. Nat. Ecol. Evol. 1, 0160 (2017).

    • Article
    • Google Scholar
  • 47.

    Weigelt, P., König, C. & Kreft, H. GIFT–a global inventory of floras and traits for macroecology and biogeography. J. Biogeogr. https://doi.org/10.1111/jbi.13623 (2019).

    • Article
    • Google Scholar
  • 48.

    Parker, T., Nakagawa, S. & Gurevitch, J., IIEE workshop participants. Promoting transparency in evolutionary biology and ecology. Ecol. Lett. 19, 726–728 (2016).

  • 49.

    McKiernan, E. C. et al. Point of view: How open science helps researchers succeed. eLife 5, e16800 (2016).

  • 50.

    Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav. 1, 0021 (2017).

    • Article
    • Google Scholar
  • 51.

    Nosek, B. A. et al. Promoting an open research culture. Science 348, 1422–1425 (2015).

  • 52.

    Farley, S. S., Dawson, A., Goring, S. J. & Williams, J. W. Situating ecology as a big-data science: current advances, challenges, and solutions. BioScience 68, 563–576 (2018).

    • Article
    • Google Scholar
  • 53.

    Falster, D. S. et al. BAAD: a Biomass And Allometry Database for woody plants. Ecology 96, 1445–1445 (2015).

    • Article
    • Google Scholar
  • 54.

    Salguero‐Gómez, R. et al. COMADRE: a global data base of animal demography. J. Anim. Ecol. 85, 371–384 (2016).

  • 55.

    Salguero‐Gómez, R. et al. The COMPADRE Plant Matrix Database: an open online repository for plant demography. J. Ecol. 103, 202–218 (2015).

    • Article
    • Google Scholar
  • 56.

    Marques, G. M. et al. The AmP project: comparing species on the basis of dynamic energy budget parameters. PLOS Comput. Biol. 14, e1006100 (2018).

  • 57.

    Conde, D. A. et al. Data gaps and opportunities for comparative and conservation biology. Proc. Natl Acad. Sci. USA 116, 9658–9664 (2019).

  • 58.

    Wieczorek, J. et al. Darwin Core: an evolving community-developed biodiversity data standard. PLOS ONE 7, e29715 (2012).

  • 59.

    Guralnick, R., Walls, R. & Jetz, W. Humboldt Core–toward a standardized capture of biological inventories for biodiversity monitoring, modeling and assessment. Ecography 41, 713–725 (2018).

    • Article
    • Google Scholar
  • 60.

    Deans, A. R. et al. Finding our way through phenotypes. PLOS Biol. 13, e1002033 (2015).

  • 61.

    Haendel, M. A. et al. Unification of multi-species vertebrate anatomy ontologies for comparative biology in Uberon. J. Biomed. Semant. 5, 21 (2014).

    • Article
    • Google Scholar
  • 62.

    Garnier, E. et al. Towards a thesaurus of plant characteristics: an ecological contribution. J. Ecol. 105, 298–309 (2017).

    • Article
    • Google Scholar
  • 63.

    The Gene Ontology Consortium. The Gene Ontology resource: 20 years and still GOing strong. Nucleic Acids Res. 47, D330–D338 (2018).

  • 64.

    Buttigieg, P. L., Morrison, N., Smith, B., Mungall, C. J. & Lewis, S. E. The environment ontology: contextualising biological and biomedical entities. J. Biomed. Semant. 4, 43 (2013).

    • Article
    • Google Scholar
  • 65.

    Becker, J., Brackbill, D. & Centola, D. Network dynamics of social influence in the wisdom of crowds. Proc. Natl Acad. Sci. USA 114, E5070–E5076 (2017).

  • 66.

    Page, S. E. The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies – New Edition (Princeton Univ. Press, 2008).

  • 67.

    Tenopir, C. et al. Data sharing by scientists: practices and perceptions. PLOS ONE 6, e21101 (2011).

  • 68.

    Tyler, E. H. et al. Extensive gaps and biases in our knowledge of a well‐known fauna: implications for integrating biological traits into macroecology. Glob. Ecol. Biogeogr. 21, 922–934 (2012).

    • Article
    • Google Scholar
  • 69.

    Kissling, W. D. et al. Towards global data products of Essential Biodiversity Variables on species traits. Nat. Ecol. Evol. 2, 1531–1540 (2018).

  • 70.

    Lajoie, G. & Kembel, S. W. Making the most of trait-based approaches for microbial ecology. Trends Microbiol. 27, 814–823 (2019).

  • 71.

    Dawson, S. K. et al. Handbook for the measurement of macrofungal functional traits: a start with basidiomycete wood fungi. Funct. Ecol. 33, 372–387 (2019).

    • Google Scholar
  • 72.

    Ankenbrand, M. J., Hohlfeld, S. C., Weber, L., Förster, F. & Keller, A. Functional exploration of natural networks and ecological communities. Methods Ecol. Evol. 9, 2028–2033 (2018).

    • Article
    • Google Scholar
  • 73.

    Gaillard, J.-M. et al. Generation time: a reliable metric to measure life-history variation among mammalian populations. Am. Nat. 166, 119–123 (2005).

  • 74.

    Steiner, U. K., Tuljapurkar, S. & Coulson, T. Generation time, net reproductive rate, and growth in stage-age-structured populations. Am. Nat. 183, 771–783 (2014).

  • 75.

    Andelman, S. J., Bowles, C. M., Willig, M. R. & Waide, R. B. Understanding environmental complexity through a distributed knowledge network. BioScience 54, 240–246 (2004).

    • Article
    • Google Scholar
  • 76.

    Schneider, F. D. et al. Towards an ecological trait-data standard. Methods Ecol. Evol. 10, 2006–2019 (2019).

    • Article
    • Google Scholar
  • 77.

    Perez-Harguindeguy, N. et al. A new handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 64, 715–716 (2013).

    • Article
    • Google Scholar
  • 78.

    Fang, J. et al. Methods and protocols for plant community inventory. Biodivers. Sci. 17, 533–548 (2009).

    • Article
    • Google Scholar
  • 79.

    Sack, L. et al. A unique web resource for physiology, ecology and the environmental sciences: PrometheusWiki. Funct. Plant Biol. 37, 687–693 (2010).

  • 80.

    Bjorkman, A. D. et al. Tundra Trait Team: a database of plant traits spanning the tundra biome. Glob. Ecol. Biogeogr. 27, 1402–1411 (2018).

    • Article
    • Google Scholar
  • 81.

    Moretti, M. et al. Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct. Ecol. 31, 558–567 (2017).

    • Article
    • Google Scholar
  • 82.

    Ferris, H. NEMAPLEX: The Nematode-Plant Expert Information System (Univ. California Davis, 2005); http://nemaplex.ucdavis.edu/

  • 83.

    Tennessen, J. M., Barry, W. E., Cox, J. & Thummel, C. S. Methods for studying metabolism in Drosophila. Methods 68, 105–115 (2014).

  • 84.

    Palomares, M. L. D. & Pauly, D. SeaLifeBase v.12/2010 (2010); www.sealifebase.org

  • 85.

    Le Bagousse‐Pinguet, Y. et al. Traits of neighbouring plants and space limitation determine intraspecific trait variability in semi‐arid shrublands. J. Ecol. 103, 1647–1657 (2015).

    • Article
    • Google Scholar
  • 86.

    Cornelissen, J. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).

    • Article
    • Google Scholar
  • 87.

    Maitner, B. S. et al. The bien r package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).

    • Article
    • Google Scholar
  • 88.

    Jetz, W., Thomas, G., Joy, J., Hartmann, K. & Mooers, A. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

  • 89.

    Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).

  • 90.

    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    • Article
    • Google Scholar
  • 91.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

  • 92.

    Andersen, K. H. et al. Characteristic sizes of life in the oceans, from bacteria to whales. Annu. Rev. Mar. Sci. 8, 217–241 (2016).

  • 93.

    Neuheimer, A. B. et al. Adult and offspring size in the ocean over 17 orders of magnitude follows two life history strategies. Ecology 96, 3303–3311 (2015).

  • 94.

    Ernest, S. M. et al. Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecol. Lett. 6, 990–995 (2003).

    • Article
    • Google Scholar
  • 95.

    Weiss, K. C. & Ray, C. A. Unifying functional trait approaches to understand the assemblage of ecological communities: synthesizing taxonomic divides. Ecography 42, 2012–2020 (2019).

    • Article
    • Google Scholar
  • 96.

    Ball, I. R., Possingham, H. P. & Watts, M. in Spatial Conservation Prioritisation: Quantitative Methods and Computational Tools (eds Moilanen, A. et al.) 185–195 (Oxford Univ. Press, 2009).

  • 97.

    Pollock, L. J., Thuiller, W. & Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 546, 141–144 (2017).

  • 98.

    Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).

  • 99.

    Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017).

  • 100.

    Loreau, M. Does functional redundancy exist? Oikos 104, 606–611 (2004).

    • Article
    • Google Scholar
  • 101.

    van Bodegom, P. M., Douma, J. C. & Verheijen, L. M. A fully traits-based approach to modeling global vegetation distribution. Proc. Natl Acad. Sci. USA 111, 13733–13738 (2014).

  • 102.

    Sakschewski, B. et al. Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Glob. Change Biol. 21, 2711–2725 (2015).

    • Article
    • Google Scholar
  • 103.

    Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).

  • 104.

    Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).

  • 105.

    Fordham, D. A. et al. How complex should models be? Comparing correlative and mechanistic range dynamics models. Glob. Change Biol. 24, 1357–1370 (2018).

    • Article
    • Google Scholar
  • 106.

    Enriquez‐Urzelai, U., Kearney, M. R., Nicieza, A. G. & Tingley, R. Integrating mechanistic and correlative niche models to unravel range‐limiting processes in a temperate amphibian. Glob. Change Biol. 25, 2633–2647 (2019).

    • Article
    • Google Scholar
  • 107.

    Benito Garzón, M., Robson, T. M. & Hampe, A. ΔTrait SDMs: species distribution models that account for local adaptation and phenotypic plasticity. New Phytol. 222, 1757–1765 (2019).

  • 108.

    Berzaghi, F. et al. Assessing the role of megafauna in tropical forest ecosystems and biogeochemical cycles–the potential of vegetation models. Ecography 41, 1934–1954 (2018).

    • Article
    • Google Scholar
  • 109.

    Galetti, M. & Dirzo, R. Ecological and evolutionary consequences of living in a defaunated world. Biol. Conserv. 163, 1–6 (2013).

    • Article
    • Google Scholar
  • 110.

    Huang, Y. et al. Orchimic (v1. 0), a microbe-mediated model for soil organic matter decomposition. Geosci. Model Dev. 11, 2111–2138 (2018).

  • 111.

    McGuire, K. L. & Treseder, K. K. Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biol. Biochem. 42, 529–535 (2010).

  • 112.

    Todd-Brown, K. E., Hopkins, F. M., Kivlin, S. N., Talbot, J. M. & Allison, S. D. A framework for representing microbial decomposition in coupled climate models. Biogeochemistry 109, 19–33 (2012).

    • Article
    • Google Scholar
  • 113.

    Hardisty, A. R. et al. The Bari Manifesto: an interoperability framework for essential biodiversity variables. Ecol. Inform. 49, 22–31 (2019).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Sustainable water solutions

    Seeding oceans with iron may not impact climate change