in

Chamber volume development, metabolic rates, and selective extinction in cephalopods

  • 1.

    Brayard, A. et al. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325, 1118–1121 (2009).

  • 2.

    Ward, P. Ammonoid extinction. In: Ammonoid paleobiology (eds. Landman, N. H., Tanabe, K. & Davis, R. A.). Springer (1996).

  • 3.

    Wiedmann, J & Kullmann, J. Crises in ammonoid evolution. In: Ammonoid paleobiology (eds. Landman, N. H., Tanabe, K. & Davis, R. A.). Springer (1996).

  • 4.

    Landman, N. H. et al. Ammonite extinction and nautilid survival at the end of the Cretaceous. Geology 42, 707–710 (2014).

  • 5.

    Landman, N. H., Goolaerts, S., Jagt, J. W., Jagt-Yazykova, E. A., Machalski, M. Ammonites on the brink of extinction: Diversity, abundance, and ecology of the order Ammonoidea at the Cretaceous/Paleogene (K/Pg) boundary. In: Ammonoid Paleobiology: From macroevolution to paleogeography (eds Klug, C., Korn, D., De Baets, K., Kruta, I., Mapes, R. H.). Springer (2015).

  • 6.

    Kruta, I., Landman, N., Rouget, I., Cecca, F. & Tafforeau, P. The role of ammonites in the Mesozoic marine food web revealed by jaw preservation. Science 331, 70–72 (2011).

  • 7.

    De Baets, K., Klug, C., Korn, D. & Landman, N. H. Early evolutionary trends in ammonoid embryonic development. Evolution 66, 1788–1806 (2012).

    • Article
    • Google Scholar
  • 8.

    Tyrrell, T., Merico, A. & McKay, D. I. A. Severity of ocean acidification following the end-Cretaceous asteroid impact. Proceedings of the National Academy of Sciences 112, 6556–6561 (2015).

  • 9.

    Kaiho, K. et al. Global climate change driven by soot at the K-Pg boundary as the cause of the mass extinction. Scientific reports 6, 28427 (2016).

  • 10.

    Klug, C. & Lehmann, J. Soft part anatomy of ammonoids: reconstructing the animal based on exceptionally preserved specimens and actualistic comparisons. In: Ammonoid Paleobiology: from anatomy to ecology (eds Klug, C., Korn, D., De Baets, K., Kruta, I., Mapes, R. H.). Springer (2015).

  • 11.

    Strotz, L. C., Saupe, E. E., Kimmig, J. & Lieberman, B. S. Metabolic rates, climate and macroevolution: a case study using Neogene molluscs. Proceedings of the Royal Society B: Biological Sciences 285, 20181292 (2018).

  • 12.

    Payne, J. L., Heim, N. A., Knope, M. L. & McClain, C. R. Metabolic dominance of bivalves predates brachiopod diversity decline by more than 150 million years. Proceedings of the Royal Society B: Biological Sciences 281, 20133122 (2014).

  • 13.

    Vermeij, G. J. Paleophysiology: from fossils to the future. Trends in ecology & evolution 30, 601–608 (2015).

    • Article
    • Google Scholar
  • 14.

    Bucher, H., Landman, N. H., Klofak, S. M. & Guex, J. Mode and rate of growth in ammonoids. In: Ammonoid paleobiology (eds Landman, N. H., Tanabe, K., Davis, R. A.). Springer (1996).

  • 15.

    Klug, C. et al. Describing ammonoid conchs. In: Ammonoid Paleobiology: From anatomy to ecology (eds Klug, C., Korn, D., De Baets, K., Kruta, I., Mapes, R. H.). Springer (2015).

  • 16.

    Arai, K. & Wani, R. Variable growth modes in late cretaceous ammonoids: implications for diverse early life histories. Journal of Paleontology 86, 258–267 (2012).

    • Article
    • Google Scholar
  • 17.

    Landman, N. H., Rye, D. M. & Shelton, K. L. Early ontogeny of Eutrephoceras compared to Recent Nautilus and Mesozoic ammonites: evidence from shell morphology and light stable isotopes. Paleobiology 9, 269–279 (1983).

    • Article
    • Google Scholar
  • 18.

    Davis, R. A. & Mohorter, W. Juvenile Nautilus from the Fiji Islands. Journal of Paleontology, 925–928 (1973).

  • 19.

    Klug, C. Life-cycles of Emsian and Eifelian ammonoids (Devonian). Lethaia 34, 215–233 (2001).

    • Article
    • Google Scholar
  • 20.

    Kraft, S., Korn, D. & Klug, C. Patterns of ontogenetic septal spacing in Carboniferous ammonoids. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 250, 31–44 (2008).

    • Article
    • Google Scholar
  • 21.

    Wani, R., Tajika, A., Ikuno, K. & Iwasaki, T. Ontogenetic trajectories of septal spacing in Early Jurassic belemnites from Germany and France, and their palaeobiological implications. Palaeontology 61, 77–88 (2018).

    • Article
    • Google Scholar
  • 22.

    Yamaguchi, A., Kumada, Y., Alfaro, A. C. & Wani, R. Abrupt changes in distance between succeeding septa at the hatching time in modern coleoids Sepiella japonica and Spirula spirula. Swiss. Journal of Palaeontology 134, 301–307 (2015).

    • Google Scholar
  • 23.

    Lemanis, R., Korn, D., Zachow, S., Rybacki, E. & Hoffmann, R. The evolution and development of cephalopod chambers and their shape. PloS one 11, e0151404 (2016).

  • 24.

    Naglik, C. et al. Growth trajectories of some major ammonoid sub‐clades revealed by serial grinding tomography data. Lethaia 48, 29–46 (2015).

    • Article
    • Google Scholar
  • 25.

    Tajika, A., Morimoto, N., Wani, R., Naglik, C. & Klug, C. Intraspecific variation of phragmocone chamber volumes throughout ontogeny in the modern nautilid Nautilus and the Jurassic ammonite Normannites. PeerJ 3, e1306 (2015).

  • 26.

    Hoffmann, R. et al. Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research. Biogeosciences 11, 2721–2739 (2014).

  • 27.

    Hoffmann, R., Reinhoff, D. & Lemanis, R. Non-invasive imaging techniques combined with morphometry: a case study from Spirula. Swiss Journal of Palaeontology 134, 207–216 (2015).

    • Article
    • Google Scholar
  • 28.

    Wiedmann, J. & Boletzky, S. V. Wachstum und Differenzierung des Schulps von Sepia officinalis unter künstlichen Aufzuchtbedingungen-Grenzen der Anwendung um palökologischen Modell. E Schweizerbart’sche Verlagsbuchhandlung, 118–133 (1982).

  • 29.

    Keupp, H. & Riedel, F. Nautilus pompilius in captivity: a case study of abnormal shell growth. Berliner geowissenschaftliche Abhandlungen E 16, 663–681 (1995).

    • Google Scholar
  • 30.

    Inoue, S. & Kondo, S. Suture pattern formation in ammonites and the unknown rear mantle structure. Scientific reports 6, 33689 (2016).

  • 31.

    Tajika, A. et al. Empirical 3D-model of the conch of the Middle Jurassic ammonite microconch Normannites: its buoyancy, the physical effects of its mature modifications and speculations on their function. Historical. Biology 27, 181–191 (2015).

    • Google Scholar
  • 32.

    Ward, P. D. The Natural History of Nautilus. Allen and Unwin (1987).

  • 33.

    Collins, D. & Ward, P. D. Adolescent growth and maturity in Nautilus. In: Nautilus (eds). Springer (2010).

  • 34.

    Wani, R. & Ayyasami, K. Ontogenetic change and intra-specific variation of shell morphology in the Cretaceous nautiloid (Cephalopoda, Mollusca) Eutrephoceras clementinum (d’Orbigny, 1840) from the Ariyalur area, southern India. Journal of Paleontology 83, 365–378 (2009).

    • Article
    • Google Scholar
  • 35.

    Cochran, J. K., Rye, D. M. & Landman, N. H. Growth rate and habitat of Nautilus pompilius inferred from radioactive and stable isotope studies. Paleobiology 7, 469–480 (1981).

    • Article
    • Google Scholar
  • 36.

    Lukeneder, A., Harzhauser, M., Müllegger, S. & Piller, W. E. Stable isotopes (δ18O and δ13C) in Spirula spirula shells from three major oceans indicate developmental changes paralleling depth distributions. Marine Biology 154, 175–182 (2008).

  • 37.

    Le Goff, R., Gauvrit, E., Du Sel, G. P. & Daguzan, J. Age group determination by analysis of the cuttlebone of the cuttlefish Sepia officinalis L. in reproduction in the Bay of Biscay. Journal of molluscan studies 64, 183–193 (1998).

    • Article
    • Google Scholar
  • 38.

    Hewitt, R. A. & Stait, B. Seasonal variation in septal spacing of Sepia officinalis and some Ordovician actinocerid nautiloids. Lethaia 21, 383–394 (1988).

    • Article
    • Google Scholar
  • 39.

    Gutowska, M. A., Melzner, F., Pörtner, H. O. & Meier, S. Cuttlebone calcification increases during exposure to elevated seawater ρCO2 in the cephalopod Sepia officinalis. Marine Biology 157, 1653–1663 (2010).

  • 40.

    Dunstan, A. J., Ward, P. D. & Marshall, N. J. Vertical distribution and migration patterns of Nautilus pompilius. PLoS One 6, e16311 (2011).

  • 41.

    Landman, N. H. et al. Nautilid nurseries: hatchlings and juveniles of Eutrephoceras dekayi from the lower Maastrichtian (Upper Cretaceous) Pierre Shale of east‐central Montana. Lethaia 51, 48–74 (2018).

    • Article
    • Google Scholar
  • 42.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    • Article
    • Google Scholar
  • 43.

    Biro, P. A. & Stamps, J. A. Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends in ecology & evolution 25, 653–659 (2010).

    • Article
    • Google Scholar
  • 44.

    Zeng, L.-Q. et al. Standard metabolic rate predicts growth trajectory of juvenile Chinese crucian carp (Carassius auratus) under changing food availability. Biology open 6, 1305–1309 (2017).

  • 45.

    O’Dor, R. K. & Shadwick, R. Squid, the olympian cephalopods. Journal of Cephalopod Biology 1, 33–55 (1989).

    • Google Scholar
  • 46.

    Seibel, B. A. On the depth and scale of metabolic rate variation: scaling of oxygen consumption rates and enzymatic activity in the Class Cephalopoda (Mollusca). Journal of Experimental Biology 210, 1–11 (2007).

  • 47.

    Seibel, B. A. & Childress, J. J. Metabolism of benthic octopods (Cephalopoda) as a function of habitat depth and oxygen concentration. Deep Sea Research Part I: Oceanographic Research Papers 47, 1247–1260 (2000).

  • 48.

    Saunders, W. B. Nautilus growth and longevity: evidence from marked and recaptured animals. Science 224, 990–992 (1984).

  • 49.

    Boutilier, R. et al. Nautilus and the art of metabolic maintenance. Nature 382, 534 (1996).

  • 50.

    Boutilier, R. et al. The protective effects of hypoxia-induced hypometabolism in the Nautilus. Journal of Comparative Physiology B 170, 261–268 (2000).

  • 51.

    O’dor, R., Forsythe, J., Webber, D., Wells, J. & Wells, M. Activity levels of Nautilus in the wild. Nature 362, 626 (1993).

  • 52.

    Price, G. D., Twitchett, R. J., Smale, C. & Marks, V. Isotopic analysis of the life history of the enigmatic squid Spirula spirula, with implications for studies of fossil cephalopods. Palaios 24, 273–279 (2009).

  • 53.

    Auclair, A.-C., Lecuyer, C., Bucher, H. & Sheppard, S. M. Carbon and oxygen isotope composition of Nautilus macromphalus: a record of thermocline waters off New Caledonia. Chemical Geology 207, 91–100 (2004).

  • 54.

    Ohno, A., Miyaji, T. & Wani, R. Inconsistent oxygen isotopic values between contemporary secreted septa and outer shell walls in modern Nautilus. Lethaia 48, 332–340 (2015).

    • Article
    • Google Scholar
  • 55.

    Naglik, C., Tajika, A., Chamberlain, J. & Klug, C. Ammonoid locomotion. In: Ammonoid Paleobiology: From anatomy to ecology (eds). Springer (2015).

  • 56.

    Jacobs, D. K. & Landman, N. H. Nautilus—a poor model for the function and behavior of ammonoids? Lethaia 26, 101–111 (1993).

    • Article
    • Google Scholar
  • 57.

    Kröger, B., Vinther, J. & Fuchs, D. Cephalopod origin and evolution: a congruent picture emerging from fossils, development and molecules. Bioessays 33, 602–613 (2011).

  • 58.

    Klug, C. & Korn, D. The origin of ammonoid locomotion. Acta Palaeontologica Polonica 49, 235–242 (2004).

    • Google Scholar
  • 59.

    Hull, P. M. et al. On impact and volcanism across the Cretaceous-Paleogene boundary. Science 367, 266–272 (2020).

  • 60.

    Tajika, A., Nützel, A. & Klug, C. The old and the new plankton: ecological replacement of associations of mollusc plankton and giant filter feeders after the Cretaceous? PeerJ 6, e4219 (2018).

  • 61.

    Korn, D. & Klug, C. Conch form analysis, variability, morphological disparity, and mode of life of the Frasnian (Late Devonian) ammonoid Manticoceras from Coumiac (Montagne Noire, France). In: Cephalopods present and past: new insights and fresh perspectives (eds Landman, N. H., Davis, R. A. & Mapes, R. H.). Springer (2007).

  • 62.

    Jenny, D. et al. Predatory behaviour and taphonomy of a Jurassic belemnoid coleoid (Diplobelida, Cephalopoda). Scientific reports 9, 7944 (2019).

  • 63.

    Fuchs, D., Laptikhovski, V., Nikolaeva, S., Alexei, I. & Rogov, M. Evolution of reproductive strategies in coleoid mollusks. Paleobiology, pp. 1–22 (2020).


  • Source: Ecology - nature.com

    Extreme rainfall events pulse substantial nutrients and sediments from terrestrial to nearshore coastal communities: a case study from French Polynesia

    Sexual communication of Spodoptera frugiperda from West Africa: Adaptation of an invasive species and implications for pest management