Steffan-Dewenter, I., Potts, S. G. & Packer, L. Pollinator diversity and crop pollination services are at risk. Trends in Ecology & Evolution 20, 651–652 (2005).
Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences 274, 303–313 (2007).
vanEngelsdorp, D. et al. A survey of honey bee colony losses in the U.S., Fall 2007 to Spring 2008. Plos One 3, e4071 (2008).
vanEngelsdorp, D. et al. Colony collapse disorder: a descriptive study. Plos One 4, e6481 (2009).
Ellis, J. D., Evans, J. D. & Pettis, J. Colony losses, managed colony population decline, and Colony Collapse Disorder in the United States. Journal of Apicultural Research 49, 134–136 (2010).
Le Conte, Y., Ellis, M. & Ritter, W. Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie 41, 353–363 (2010).
Xie, X., Huang, Z. Y. & Zeng, Z. Why do Varroa mites prefer nurse bees? Scientific Reports 6, 28228 (2016).
Lee, K. V. et al. A national survey of managed honey bee 2013–2014 annual colony losses in the USA. Apidologie 46, 292–305 (2015).
Dietemann, V. et al. Varroa destructor: research avenues towards sustainable control. Journal of Apicultural Research 51, 125–132 (2012).
Francis, R. M., Nielsen, S. L. & Kryger, P. Varroa-virus interaction in collapsing honey bee colonies. Plos One 8, e57540 (2013).
Allen, M. & Ball, B. The incidence and world distribution of honey bee viruses. Bee World 77, 141–162 (1996).
Grozinger, C. M. & Flenniken, M. L. Bee viruses: ecology, pathogenicity, and impacts. Annual Review of Entomology 64, 205–226 (2019).
Chen, Y., Pettis, J. S., Evans, J. D., Kramer, M. & Feldlaufer, M. F. Transmission of Kashmir bee virus by the ectoparasitic mite Varroa destructor. Apidologie 35, 441–448 (2004).
Shen, M., Yang, X., Cox-Foster, D. & Cui, L. The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology 342, 141–149 (2005).
Shen, M., Cui, L., Ostiguy, N. & Cox-Foster, D. Intricate transmission routes and interactions between picorna-like viruses (Kashmir bee virus and sacbrood virus) with the honeybee host and the parasitic varroa mite. Journal of General Virology 86, 2281–2289 (2005).
Di Prisco, G. et al. Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera. Journal of General Virology 92, 151–155 (2011).
Wilfert, L. et al. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 351, 594–597 (2016).
Bailey, L. & Ball, B. V. Viruses. In Honey Bee Pathology 10–34 (Elsevier, 1991).
Lanzi, G. et al. Molecular and biological characterization of deformed wing virus of honeybees (Apis mellifera L.). Journal of Virology 80, 4998–5009 (2006).
Mordecai, G. J., Wilfert, L., Martin, S. J., Jones, I. M. & Schroeder, D. C. Diversity in a honey bee pathogen: first report of a third master variant of the Deformed Wing Virus quasispecies. The ISME Journal 10, 1264–1273 (2016).
Martin, S. J. et al. Global honey bee viral landscape altered by a parasitic mite. Science (New York, N.Y.) 336, 1304–6 (2012).
Kevill, J. L. et al. DWV-A lethal to honey bees (Apis mellifera): a colony level survey of DWV variants (A, B, and C) in England, Wales, and 32 states across the US. Viruses 11, 426 (2019).
Natsopoulou, M. E. et al. The virulent, emerging genotype B of Deformed wing virus is closely linked to overwinter honeybee worker loss. Scientific Reports 7, 5242 (2017).
Highfield, A. C. et al. Deformed wing virus implicated in overwintering honeybee colony losses. Applied and environmental microbiology 75, 7212–20 (2009).
Shah, K. S., Evans, E. C. & Pizzorno, M. C. Localization of deformed wing virus (DWV) in the brains of the honeybee, Apis mellifera Linnaeus. Virology Journal 6, 182 (2009).
Iqbal, J. & Mueller, U. Virus infection causes specific learning deficits in honeybee foragers. Proceedings of the Royal Society B: Biological Sciences 274, 1517–21 (2007).
Wells, T. et al. Flight performance of actively foraging honey bees is reduced by a common pathogen. Environmental Microbiology Reports 8, 728–737 (2016).
Dainat, B., Evans, J. D., Chen, Y. P., Gauthier, L. & Neumann, P. Dead or alive: deformed wing virus and Varroa destructor reduce the life span of winter honeybees. Applied and environmental microbiology 78, 981–7 (2012).
McNeill, M. S., Kapheim, K. M., Brockmann, A., McGill, T. A. W. W. & Robinson, G. E. Brain regions and molecular pathways responding to food reward type and value in honey bees. Genes, Brain and Behavior 15, 305–317 (2015).
Shpigler, H. Y. et al. Honey bee neurogenomic responses to affiliative and agonistic social interactions. Genes, Brain and Behavior 18, e12509 (2018).
Kovac, H. & Crailsheim, K. Lifespan of Apis Mellifera Carnica Pollm. infested by Varroa Jacobsoni Oud. in relation to season and extent of infestation. Journal of Apicultural Research 27, 230–238 (1988).
Doublet, V. et al. Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens. BMC Genomics 18, 207 (2017).
Benaets, K. et al. Covert deformed wing virus infections have long-term deleterious effects on honeybee foraging and survival. Proceedings of the Royal Society B: Biological Sciences 284, 20162149 (2017).
Huang, Z.-Y. & Robinson, G. E. Regulation of honey bee division of labor by colony age demography. Behavioral Ecology and Sociobiology 39, 147–158 (1996).
Ushitani, T., Perry, C. J., Cheng, K. & Barron, A. B. Accelerated behavioural development changes fine-scale search behaviour and spatial memory in honey bees (Apis mellifera L.). Journal of Experimental Biology 219, 412–8 (2016).
Peng, F. et al. A simple computational model of the bee mushroom body can explain seemingly complex forms of olfactory learning and memory. Current Biology 27, 224–230 (2017).
Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).
Seeley, T. D. Adaptive significance of the age polyethism schedule in honeybee colonies. Behavioral Ecology and Sociobiology 11, 287–293 (1982).
Winston, M. L. The Biology of the Honey Bee. (Harvard University Press, 1991).
Shpigler, H. Y. et al. Behavioral, transcriptomic and epigenetic responses to social challenge in honey bees. Genes, Brain and Behavior 16, 579–591 (2017).
Traniello, I. M., Chen, Z., Bagchi, V. A. & Robinson, G. E. Valence of social information is encoded in different subpopulations of mushroom body Kenyon cells in the honeybee brain. Proceedings of the Royal Society B: Biological Sciences 286, 20190901 (2019).
Khamis, A. M. et al. Insights into the transcriptional architecture of behavioral plasticity in the honey bee Apis mellifera. Scientific Reports 5, 11136 (2015).
Alaux, C. et al. Regulation of brain gene expression in honey bees by brood pheromone. Genes, Brain and Behavior 8, 309–319 (2009).
Thurmond, J. et al. FlyBase 2.0: the next generation. Nucleic Acids Research 47, D759–D765 (2019).
Kevill, J. et al. ABC assay: method development and application to quantify the role of three DWV master variants in overwinter colony losses of European honey bees. Viruses 9, 314 (2017).
Xiong, W. C., Okano, H., Patel, N. H., Blendy, J. A. & Montell, C. repo encodes a glial-specific homeo domain protein required in the Drosophila nervous system. Genes & Development 8, 981–94 (1994).
Shah, A. K., Kreibich, C. D., Amdam, G. V. & Münch, D. Metabolic enzymes in glial cells of the honeybee brain and their associations with aging, starvation and food response. Plos One 13, e0198322 (2018).
Brutscher, L. M., Daughenbaugh, K. F. & Flenniken, M. L. Virus and dsRNA-triggered transcriptional responses reveal key components of honey bee antiviral defense. Scientific Reports 7, 6448 (2017).
Johnson, R. M., Evans, J. D., Robinson, G. E. & Berenbaum, M. R. Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera). Proceedings of the National Academy of Sciences of the United States of America 106, 14790–5 (2009).
Brutscher, L. M. & Flenniken, M. L. RNAi and antiviral defense in the honey bee. Journal of Immunology Research 2015, 941897 (2015).
Drakesmith, H. & Prentice, A. Viral infection and iron metabolism. Nature Reviews Microbiology 6, 541–552 (2008).
Liu, G. et al. Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation. The Journal of Clinical Investigation 124, 3032–3046 (2014).
Pesch, Y.-Y., Riedel, D., Patil, K. R., Loch, G. & Behr, M. Chitinases and Imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects. Scientific Reports 6, 18340 (2016).
Chupp, G. L. et al. A chitinase-like protein in the lung and circulation of patients with severe asthma. New England Journal of Medicine 357, 2016–2027 (2007).
Lee, C. G. et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annual Review of Physiology 73, 479–501 (2011).
Kawada, M., Hachiya, Y., Arihiro, A. & Mizoguchi, E. Role of mammalian chitinases in inflammatory conditions. The Keio Journal of Medicine 56, 21–7 (2007).
Wiley, C. A. et al. Role for mammalian chitinase 3-like protein 1 in traumatic brain injury. Neuropathology 35, 95–106 (2015).
Falcon, T. et al. Exploring integument transcriptomes, cuticle ultrastructure, and cuticular hydrocarbons profiles in eusocial and solitary bee species displaying heterochronic adult cuticle maturation. Plos One 14, e0213796 (2019).
Varela, P. F., Llera, A. S., Mariuzza, R. A. & Tormo, J. Crystal structure of imaginal disc growth factor-2. Journal of Biological Chemistry 277, 13229–13236 (2002).
Kim, M. A. et al. Neural ganglia transcriptome and peptidome associated with sexual maturation in female Pacific abalone (Haliotis discus hannai). Genes 10, 268 (2019).
Perry, C. J., Søvik, E., Myerscough, M. R. & Barron, A. B. Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proceedings of the National Academy of Sciences of the United States of America 112, 3427–32 (2015).
Khoury, D. S., Myerscough, M. R. & Barron, A. B. A quantitative model of honey bee colony population dynamics. Plos One 6, e18491 (2011).
Yañez, O. et al. Deformed wing virus and drone mating flights in the honey bee (Apis mellifera): implications for sexual transmission of a major honey bee virus. Apidologie 43, 17–30 (2012).
Chu, H. M., Tan, Y., Kobierski, L. A., Balsam, L. B. & Comb, M. J. Activating transcription factor-3 stimulates 3′,5′-cyclic adenosine monophosphate-dependent gene expression. Molecular Endocrinology 8, 59–68 (1994).
Schulz, D. J., Huang, Z.-Y. & Robinson, G. E. Effects of colony food shortage on behavioral development in honey bees. Behavioral Ecology and Sociobiology 42, 295–303 (1998).
Goblirsch, M., Huang, Z. Y. & Spivak, M. Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection. Plos One 8, e58165 (2013).
Downey, D. L., Higo, T. T. & Winston, M. L. Single and dual parasitic mite infestations on the honey bee, Apis mellifera L. Insectes Sociaux 47, 171–176 (2000).
Yildirim, K., Petri, J., Kottmeier, R. & Klämbt, C. Drosophila glia: few cell types and many conserved functions. Glia 67, 5–26 (2019).
Kretzschmar, D. & Pflugfelder, G. Glia in development, function, and neurodegeneration of the adult insect brain. Brain Research Bulletin 57, 121–131 (2002).
Edwards, T. N. & Meinertzhagen, I. A. The functional organisation of glia in the adult brain of Drosophila and other insects. Progress in Neurobiology 90, 471–497 (2010).
Dheilly, N. M. et al. Who is the puppet master? Replication of a parasitic wasp-associated virus correlates with host behaviour manipulation. Proceedings of the Royal Society B: Biological Sciences 282, 20142773–20142773 (2015).
Retallack, H. et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proceedings of the National Academy of Sciences of the United States of America 113, 14408–14413 (2016).
Bloch, G., Toma, D. P. & Robinson, G. E. Behavioral rhythmicity, age, division of labor and period expression in the honey bee brain. Journal of Biological Rhythms 16, 444–456 (2001).
Buenz, E. J., Rodriguez, M. & Howe, C. L. Disrupted spatial memory is a consequence of picornavirus infection. Neurobiology of Disease 24, 266–273 (2006).
McMahon, D. P. et al. Elevated virulence of an emerging viral genotype as a driver of honeybee loss. Proceedings of the Royal Society B: Biological Sciences 283, 20160811 (2016).
Rittschof, C. C. et al. Neuromolecular responses to social challenge: common mechanisms across mouse, stickleback fish, and honey bee. Proceedings of the National Academy of Sciences of the United States of America 111, 17929–34 (2014).
Wallberg, A. et al. A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds. BMC Genomics 2019 20:1 20, 275 (2019).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Research 41, e108–e108 (2013).
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–40 (2010).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing on JSTOR. Journal of the Royal Statistical Society. Series B: Methodological 57, 289–300 (1995).
Shen, L. GeneOverlap: An R package to test and visualize gene overlaps. (2014).
Wang, M., Zhao, Y. & Zhang, B. Efficient test and visualization of multi-set intersections. Scientific Reports 5, 16923 (2015).
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
Hong, G., Zhang, W., Li, H., Shen, X. & Guo, Z. Separate enrichment analysis of pathways for up- and downregulated genes. Journal of the Royal Society, Interface 11, 20130950 (2014).
Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. Plos One 6, e21800 (2011).
Chandrasekaran, S. et al. Behavior-specific changes in transcriptional modules lead to distinct and predictable neurogenomic states. Proceedings of the National Academy of Sciences of the United States of America 108, 18020–5 (2011).
Celniker, S. E. et al. Unlocking the secrets of the genome. Nature 459, 927–930 (2009).
Gallo, S. M. et al. REDfly v3.0: toward a comprehensive database of transcriptional regulatory elements in Drosophila. Nucleic Acids Research 39, D118–D123 (2011).
Murali, T. et al. DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila. Nucleic Acids Research 39, D736–D743 (2011).
Source: Ecology - nature.com