in

Intra-specific Niche Partitioning in Antarctic Fur Seals, Arctocephalus gazella

  • 1.

    Svanbäck, R. & Bolnick, D. I. Intraspecific competition drives increased resource use diversity within a natural population. Proceedings of the Royal Society B: Biological Sciences 274(1611), 839–844 (2006).

    • Article
    • Google Scholar
  • 2.

    Hutchinson, G. E. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22, 415–427 (1957).

    • Article
    • Google Scholar
  • 3.

    Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–38 (1974).

  • 4.

    Hardin, G. The competitive exclusion principle. Science 131(3409), 1292–1297 (1960).

  • 5.

    Staniewicz, A., Behler, N., Dharmasyah, S. & Jones, G. Niche partitioning between juvenile sympatric crocodilians in Mesangat Lake, East Kalimantan, Indonesia. Raffles Bulletin of Zoology 66, 528–537 (2018).

    • Google Scholar
  • 6.

    MacArthur, R. & Wilson, E. The Theory of Island Biogeography (Princeton University Press, 1967).

  • 7.

    Root, R. The niche exploitation pattern of the blue-gray gnatcatcher. Ecological Monographs 37, 317–350 (1967).

    • Article
    • Google Scholar
  • 8.

    Ratcliffe, N. et al. The roles of sex, mass and individual specialisation in partitioning foraging-depth niches of a pursuit-diving predator. PloS One 8(10), e79107 (2013).

  • 9.

    Tschumy, W. O. Competition between juveniles and adults in age-structured populations. Theoretical Population Biology 21(2), 255–268 (1982).

  • 10.

    Johst, K., Berryman, A. & Lima, M. From individual interactions to population dynamics: individual resource partitioning simulation exposes the causes of nonlinear intra‐specific competition. Population Ecology 50(1), 79–90 (2008).

    • Article
    • Google Scholar
  • 11.

    Zhao, T., Villéger, S., Lek, S. & Cucherousset, J. High intraspecific variability in the functional niche of a predator is associated with ontogenetic shift and individual specialization. Ecology and Evolution 4, 4649–4657 (2014).

  • 12.

    Thiemann, G. W., Iverson, S. J., Stirling, I. & Obbard, M. E. Individual patterns of prey selection and dietary specialization in an Arctic marine carnivore. Oikos 120(10), 1469–1478 (2011).

    • Article
    • Google Scholar
  • 13.

    Carneiro, A. P., Bonnet-Lebrun, A. S., Manica, A., Staniland, I. J. & Phillips, R. A. Methods for detecting and quantifying individual specialisation in movement and foraging strategies of marine predators. Marine Ecology Progress Series 578, 151–166 (2017).

  • 14.

    Bon, R. & Campan, R. Unexplained sexual segregation in polygamous ungulates: a defense of an ontogenetic approach. Behavioural Processes 38(2), 131–154 (1996).

  • 15.

    Pellegrini, A. D. Sexual segregation in childhood: A review of evidence for two hypotheses. Animal Behaviour 68(3), 435–443 (2004).

    • Article
    • Google Scholar
  • 16.

    Ruckstuhl, K. E. Foraging behaviour and sexual segregation in bighorn sheep. Animal Behaviour 56(1), 99–106 (1998).

  • 17.

    Conradt, L. & Roper, T. J. Activity synchrony and social cohesion: a fission-fusion model. Proceedings of the Royal Society of London. Series B: Biological Sciences 267(1458), 2213–2218 (2000).

  • 18.

    Gittleman, J. L. & Valkenburgh, B. V. Sexual dimorphism in the canines and skulls of carnivores: effects of size, phylogency, and behavioural ecology. Journal of Zoology 242(1), 97–117 (1997).

    • Article
    • Google Scholar
  • 19.

    Mayer, M., Shine, R. & Brown, G. Bigger babies are bolder: effects of body size on personality of hatchling snakes. Behaviour 153, 313–323 (2016).

    • Article
    • Google Scholar
  • 20.

    Isaac, J. L. Potential causes and life-history consequences of sexual size dimorphism in mammals. Mammal Review 35, 101–115 (2005).

    • Article
    • Google Scholar
  • 21.

    Clutton-Brock, T. H. & Harvey, P. H. The functional significance of variation in body size among mammals. Special Publication of the American Society of Mammalogists 7, 632–663 (1983).

    • Google Scholar
  • 22.

    Prins, H. H. T. & Olff, H. Species richness of African grazer assemblages: towards a functional explanation in Dynamics of Tropical Communities (Eds Newbery, D. M., Prin, H. H. T. & Brown, N. D.) 449–490 (Blackwell, 1998).

  • 23.

    Ruckstuhl, K. E., Clutton-Brock, T. & Neuhaus, P. Sexual segregation and the ecology of the two sexes (Cambridge University Press, 2005).

  • 24.

    Stokke, S. & du Toit, J. T. Sex and size related differences in the dry season feeding patterns of elephants in Chobe National Park, Botswana. Ecography 23(1), 70–80 (2000).

    • Article
    • Google Scholar
  • 25.

    Jakimchuk, R. D., Ferguson, S. H. & Sopuck, L. G. Differential habitat use and sexual segregation in the Central Arctic caribou herd. Canadian Journal of Zoology 65(3), 534–541 (1987).

  • 26.

    Lingle, S. Coyote predation and habitat segregation of white‐tailed deer and mule deer. Ecology 83(7), 2037–2048 (2002).

    • Article
    • Google Scholar
  • 27.

    Staniland, I. J. & Robinson, S. L. Segregation between the sexes: Antarctic fur seals, Arctocephalus gazella, foraging at South Georgia. Animal Behaviour 75(4), 1581–1590 (2008).

    • Article
    • Google Scholar
  • 28.

    Heupel, M. R., Carlson, J. K. & Simpfendorfer, C. A. Shark nursery areas: concepts, definition, characterization and assumptions. Marine Ecology Progress Series 337, 287–297 (2007).

  • 29.

    Werner, E. E. & Gilliam, J. F. The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology, Evolution, and Systematics 15, 393–425 (1984).

    • Article
    • Google Scholar
  • 30.

    Grubbs, R. D. Ontogenetic shifts in movements and habitat use in Sharks and their Relatives II: Biodiversity, Physiology, and Conservation (Eds Carrier, J. C., Musick, J. A. & Heithaus, M. R.) 319–350 (CRC Press, 2010).

  • 31.

    Webb, J. K., Shine, R. & Christian, K. A. Does intraspecific niche partitioning in a native predator influence its response to an invasion by a toxic prey species? Austral Ecology 30(2), 201–209 (2005).

    • Article
    • Google Scholar
  • 32.

    Bolnick, D. I. et al. The ecology of individuals: incidence and implications of individual specialization. The American Naturalist 161(1), 1–28 (2002).

  • 33.

    Durell, S. E. L. V. D. Individual feeding specialisation in shorebirds: population consequences and conservation implications. Biological Reviews 75(4), 503–518 (2000).

    • Article
    • Google Scholar
  • 34.

    Estes, J. A., Riedman, M. L., Staedler, M. M., Tinker, M. T. & Lyon, B. E. Individual variation in prey selection by sea otters: patterns, causes and implications. Journal of Animal Ecology 72, 144–155 (2003).

    • Article
    • Google Scholar
  • 35.

    Jeglinski, J., Werner, C., Robinson, P., Costa, D. & Trillmich, F. Age, body mass and environmental variation shape the foraging ontogeny of Galapagos sea lions. Marine Ecology Progress Series 453, 279–296 (2012).

  • 36.

    Chilvers, B. L. Whisker stable isotope values indicate long-term foraging strategies for female New Zealand sea lions. Endangered Species Research 38, 55–66 (2019).

    • Article
    • Google Scholar
  • 37.

    Beest, F. M. et al. Increasing density leads to generalization in both coarse‐grained habitat selection and fine‐grained resource selection in a large mammal. Journal of Animal Ecology 83(1), 147–156 (2014).

  • 38.

    Dayan, T. & Simberloff, D. Patterns of size separation in carnivore communities in Carnivore Behavior, Ecology, and Evolution, vol 2. (Ed. Gittleman, J. L.) 243–266 (Cornell University Press, 1996).

  • 39.

    Van Valkenburgh, B. Major patterns in the history of carnivorous mammals. Annual Review of Earth and Planetary Sciences 27, 463–493 (1999).

  • 40.

    Costa, A. et al. Generalisation within specialization: inter-individual diet variation in the only specialized salamander in the world. Scientific Reports 5, 13260 (2015).

  • 41.

    Forcada, J. & Staniland, I. J. Antarctic fur seal Arctocephalus gazella in Encyclopedia of Marine Mammals, 2nd edition (Eds Perrin, W. F., Würsig, B. & Thewissen, J. G. M.) 36–42 (Academic Press, 2009).

  • 42.

    Staniland, I. Sexual segregation in seals in Sexual segregation in Vertebrates: Ecology of the Two Sexes (Eds Ruckstuhl, K. E. & Clutton-Brock, T. H.) 53–73 (Cambridge University Press, 2005).

  • 43.

    Waluda, C. M., Gregory, S. & Dunn, M. J. Long-term variability in the abundance of Antarctic fur seals Arctocephalus gazella at Signy Island, South Orkneys. Polar Biology 33(3), 305–312 (2010).

    • Article
    • Google Scholar
  • 44.

    Boyd, I. L., McCafferty, D. J., Reid, K., Taylor, R. & Walker, T. R. Dispersal of male and female Antarctic fur seals (Arctocephalus gazella). Canadian Journal of Fisheries and Aquatic Sciences 55(4), 845–852 (1998).

    • Article
    • Google Scholar
  • 45.

    Staniland, I. J., Robinson, S. L., Silk, J. R. D., Warren, N. & Trathan, P. N. Winter distribution and haul-out behaviour of female Antarctic fur seals from South Georgia. Marine Biology 159(2), 291–301 (2012).

    • Article
    • Google Scholar
  • 46.

    Arthur, B. et al. Return customers: Foraging site fidelity and the effect of environmental variability in wide-ranging Antarctic fur seals. PloS One 10(3), e0120888 (2015).

  • 47.

    Payne, M. R. Growth in the Antarctic fur seal Arctocephalus gazella. Journal of Zoology 187(1), 1–20 (1979).

  • 48.

    Kernaléguen, L. et al. Early-life sexual segregation: ontogeny of isotopic niche differentiation in the Antarctic fur seal. Scientific Reports 6, 33211 (2016).

  • 49.

    Lea, M. A. et al. Colony-based foraging segregation by Antarctic fur seals at the Kerguelen Archipelago. Marine Ecology Progress Series 358, 273–287 (2008).

  • 50.

    Giménez, J. et al. Intra-and interspecific niche partitioning in striped and common dolphins inhabiting the southwestern Mediterranean Sea. Marine Ecology Progress Series 567, 199–210 (2017).

  • 51.

    Newsome, S. D., Martınez del Rio, C., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Frontiers in Ecology and the Environment 5, 429–436 (2007).

    • Article
    • Google Scholar
  • 52.

    DeNiro, M. J. & Epstein, S. You are what you eat (plus a few ‰): the carbon isotope cycle in food chains. Geological Society of America 6, 834–835 (1976).

    • Google Scholar
  • 53.

    Ben-David, M. & Flaherty, E. A. Stable isotopes in mammalian research: a beginner’s guide. Journal of Mammalogy 93(2), 312–328 (2012).

    • Article
    • Google Scholar
  • 54.

    Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48(5), 1135–1140 (1984).

  • 55.

    Fry, B. Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnology and Oceanography 33(5), 1182–1190 (1988).

  • 56.

    Hobson, K. A., Piatt, J. F. & Pitocchelli, J. Using stable isotopes to determine seabird trophic relationships. Journal of Animal Ecology 63, 786–798 (1994).

    • Article
    • Google Scholar
  • 57.

    Kelly, J. F. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Canadian Journal of Zoology 78(1), 1–27 (2000).

  • 58.

    Goericke, R. & Fry, B. Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean. Global Biogeochemical Cycles 8(1), 85–90 (1994).

  • 59.

    Rau, G. H., Takahashi, T. & Des Marais, D. J. Latitudinal variations in plankton δ13C: implications for CO2 and productivity in past oceans. Nature 341(6242), 516 (1989).

  • 60.

    Cherel, Y., Hobson, K. A., Guinet, C. & Vanpe, C. Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialization in diving predators from the Southern Ocean. Journal of Animal Ecology 76(4), 826–836 (2007).

  • 61.

    Phillips, R. A., Bearhop, S., Mcgill, R. A. & Dawson, D. A. Stable isotopes reveal individual variation in migration strategies and habitat preferences in a suite of seabirds during the nonbreeding period. Oecologia 160(4), 795–806 (2009).

  • 62.

    Cherel, Y., Kernaléguen, L., Richard, P. & Guinet, C. Whisker isotopic signature depicts migration patterns and multi-year intra-and inter-individual foraging strategies in fur seals. Biology Letters 5(6), 830–832 (2009).

  • 63.

    Kernaléguen, L. et al. Long-term species, sexual and individual variations in foraging strategies of fur seals revealed by stable isotopes in whiskers. PloS One 7(3), e32916 (2012).

  • 64.

    Stowasser, G. et al. Food web dynamics in the Scotia Sea in summer: a stable isotope study. Deep Sea Research Part II: Topical Studies in Oceanography 59, 208–221 (2012).

  • 65.

    Moore, J. K., Abbott, M. R. & Richman, J. G. Variability in the location of the Antarctic Polar Front (90–20 W) from satellite sea surface temperature data. Journal of Geophysical Research: Oceans 102(C13), 27825–27833 (1997).

    • Article
    • Google Scholar
  • 66.

    Wakefield, E. D. et al. Long‐term individual foraging site fidelity – why some gannets don’t change their spots. Ecology 96(11), 3058–3074 (2015).

  • 67.

    Seyboth, E. et al. Isotopic evidence of the effect of warming on the northern Antarctic Peninsula ecosystem. Deep Sea Research Part II: Topical Studies in Oceanography 149, 218–228 (2018).

  • 68.

    Tarroux, A., Lowther, A. D., Lydersen, C. & Kovacs, K. M. Temporal shift in the isotopic niche of female Antarctic fur seals from Bouvetøya. Polar Research 35(1), 31335 (2016).

  • 69.

    Hertz, E., Trudel, M., Cox, M. K. & Mazumder, A. Effects of fasting and nutritional restriction on the isotopic ratios of nitrogen and carbon: a meta‐analysis. Ecology and evolution 5(21), 4829–4839 (2015).

  • 70.

    Salton, M., Kirkwood, R., Slip, D. & Harcourt, R. Mechanisms for sex-based segregation in foraging behaviour by a polygynous marine carnivore. Marine Ecology Progress Series 624, 213–226 (2019).

  • 71.

    Pyke, G. H., Pulliam, H. R. & Charnov, E. L. Optimal foraging: a selective review of theory and tests. The Quarterly Review of Biology 52(2), 137–154 (1977).

    • Article
    • Google Scholar
  • 72.

    Haskell, J. P., Ritchie, M. E. & Olff, H. Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges. Nature 418, 527–530 (2002).

  • 73.

    Boyd, I. L. Estimating food consumption of marine predators: Antarctic fur seals and macaroni penguins. Journal of Applied Ecology 39(1), 103–119 (2002).

    • Article
    • Google Scholar
  • 74.

    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nature Climate Change 9, 142–147 (2019).

  • 75.

    Murphy, E. J. et al. Interannual variability of the South Georgia marine ecosystem: biological and physical sources of variation in the abundance of krill. Fisheries Oceanography 7(3–4)), 381–390 (1998).

    • Article
    • Google Scholar
  • 76.

    Reid, K. & Croxall, J. P. Environmental response of upper trophic-level predators reveals a system change in an Antarctic marine ecosystem. Proceedings of the Royal Society of London. Series B: Biological Sciences 268(1465), 377–384 (2001).

  • 77.

    Waluda, C. M., Hill, S. L., Peat, H. J. & Trathan, P. N. Long-term variability in the diet and reproductive performance of penguins at Bird Island, South Georgia. Marine Biology 164(3), 39 (2017).

    • Article
    • Google Scholar
  • 78.

    Forcada, J. & Hoffman, J. I. Climate change selects for heterozygosity in a declining fur seal population. Nature 511, 462–465 (2014).

  • 79.

    Bengtson J. L., Ferm L. M., Härkönen T. J. & Stewart B. S. Abundance of Antarctic Fur Seals in the South Shetland Islands, Antarctica, During the 1986/87 Austral Summer in Antarctic Ecosystems (Eds Kerry, K. R. & Hempel, G.) 265–270 (Springer, 1990).

  • 80.

    Hucke-Gaete, R., Osman, L. P., Moreno, C. A. & Torres, D. Examining natural population growth from near extinction: the case of the Antarctic fur seal at the South Shetlands, Antarctica. Polar Biology 27(5), 304–311 (2004).

    • Article
    • Google Scholar
  • 81.

    Breed, G. A., Bowen, W. D., McMillan, J. I. & Leonard, M. L. Sexual segregation of seasonal foraging habitats in a non-migratory marine mammal. Proceedings of the Royal Society B: Biological Sciences 273(1599), 2319–2326 (2006).

  • 82.

    Nicol, S., Foster, J. & Kawaguchi, S. The fishery for Antarctic krill – recent developments. Fish and Fisheries 13(1), 30–40 (2012).

    • Article
    • Google Scholar
  • 83.

    Estrada, J. A., Rice, A. N., Natanson, L. J. & Skomal, G. B. Use of isotopic analysis of vertebrae in reconstructing ontogenetic feeding ecology in white sharks. Ecology 87(4), 829–834 (2006).

  • 84.

    Drago, M. et al. Isotopic niche partitioning between two apex predators over time. Journal of Animal Ecology 86(4), 766–780 (2017).

  • 85.

    Hill, S. L., Atkinson, A., Pakhomov, E. A. & Siegel, V. Evidence for a decline in the population density of Antarctic krill Euphausia superba still stands. A comment on Cox et al. Journal of Crustacean Biology 39(3), 316–322 (2019).

    • Article
    • Google Scholar
  • 86.

    Hanson, N. N., Wurster, C. M., Bird, M. I., Reid, K. & Boyd, I. L. Intrinsic and extrinsic forcing in life histories: patterns of growth and stable isotopes in male Antarctic fur seal teeth. Marine Ecology Progress Series 388, 263–272 (2009).

  • 87.

    Bergmann, K. G. L. C. Über die Verhältnisse der wärmeokönomie der Thiere zu ihrer Grösse. Göttinger Studien 3, 595–708 (1847).

    • Google Scholar
  • 88.

    Alonso, J. C., Salgado, I. & Palacín, C. Thermal tolerance may cause sexual segregation in sexually dimorphic species living in hot environments. Behavioral Ecology 27(3), 717–724 (2015).

    • Article
    • Google Scholar
  • 89.

    Agashe, D. & Bolnick, D. I. Intraspecific genetic variation and competition interact to influence niche width. Proceedings of the Royal Society B: Biological Sciences 277, 2915–2924 (2010).

  • 90.

    Cloyed, C. S. & Eason, P. K. Niche partitioning and the role of intraspecific niche variation in structuring a guild of generalist anurans. Royal Society open science 4(3), 170060 (2017).

  • 91.

    Hawkes, L. A. et al. Phenotypically linked dichotomy in sea turtle foraging requires multiple conservation approaches. Current Biology 16(10), 990–995 (2006).

  • 92.

    Sato, K. et al. Stroke frequency, but not swimming speed, is related to body size in free-ranging seabirds, pinnipeds and cetaceans. Proceedings of the Royal Society B: Biological Sciences 274(1609), 471–477 (2006).

    • Article
    • Google Scholar
  • 93.

    Williams, T. M. The evolution of cost efficient swimming in marine mammals: limits to energetic optimization. Philosophical Transactions of the Royal Society B 354, 193–201 (1999).

    • Article
    • Google Scholar
  • 94.

    Ficetola, G. F. & De Bernardi, F. Trade-off between larval development rate and post-metamorphic traits in the frog Rana latastei. Evolutionary Ecology 20(2), 143–158 (2006).

    • Article
    • Google Scholar
  • 95.

    Warren, N. L., Trathan, P. N., Forcada, J., Fleming, A. & Jessopp, M. J. Distribution of post-weaning Antarctic fur seal Arctocephalus gazella pups at South Georgia. Polar Biology 29(3), 179–188 (2006).

    • Article
    • Google Scholar
  • 96.

    Patrick, S. C., Pinaud, D. & Weimerskirch, H. Boldness predicts an individual’s position along an exploration–exploitation foraging trade‐off. Journal of Animal Ecology 86(5), 1257–1268 (2017).

  • 97.

    Charnov, E. L. Optimal foraging, the marginal value theorem. Theoretical Population Biology 9, 129–136 (1976).

  • 98.

    Araújo, M. S. et al. Network analysis reveals contrasting effects of intraspecific competition on individual vs. population diets. Ecology 89(7), 1981–1993 (2008).

  • 99.

    Goubault, M., Outreman, Y., Poinsot, D. & Cortesero, A. M. Patch exploitation strategies of parasitic wasps under intraspecific competition. Behavioral Ecology 16(4), 693–701 (2005).

    • Article
    • Google Scholar
  • 100.

    Casey, T. M. Energetics of locomotion. Advances in Comparative and Environmental Physiology 11, 251–275 (1992).

    • Article
    • Google Scholar
  • 101.

    Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Marine Ecology Progress Series 362, 1–23 (2008).

  • 102.

    Green, K., Burton, H. R. & Williams, R. The diet of Antarctic fur seals Arctocephalus gazella (Peters) during the breeding season at Heard Island. Antarctic Science 1(4), 317–324 (1989).

  • 103.

    Klages, N. T. W. & Bester, M. N. Fish prey of fur seals Arctocephalus spp. at subantarctic Marion Island. Marine Biology 131(3), 559–566 (1998).

    • Article
    • Google Scholar
  • 104.

    Baker, J. R. & McCann, T. S. Pathology and bacteriology of adult male Antarctic fur seals, Arctocephalus gazella, dying at Bird Island, South Georgia. British Veterinary Journal 145(3), 263–275 (1989).

  • 105.

    Paritte, J. M. & Kelly, J. F. Effect of cleaning regime on stable-isotope ratios of feathers in Japanese Quail (Coturnix japonica). The Auk 126(1), 165–174 (2009).

    • Article
    • Google Scholar
  • 106.

    Qi, H., Coplen, T. B., Geilmann, H., Brand, W. A. & Böhlke, J. K. Two new organic reference materials for δ13C and δ15N measurements and a new value for the δ13C of NBS 22 oil. Rapid Communications in Mass Spectrometry 17(22), 2483–2487 (2003).

  • 107.

    Coplen, T. B. et al. New guidelines for δ 13C measurements. Analytical Chemistry 78(7), 2439–2441 (2006).

  • 108.

    Boyd, I. L. & Roberts, J. P. Tooth growth in male Antarctic fur seals (Arctocephalus gazella) from South Georgia: an indicator of long‐term growth history. Journal of Zoology 229(2), 177–190 (1993).

    • Article
    • Google Scholar
  • 109.

    Beamish, R. J. & Fournier, D. A. A method for comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Sciences 38(8), 982–983 (1981).

    • Article
    • Google Scholar
  • 110.

    Rösch, A. & Schmidbauer, H. WaveletComp 1.1. WaveletComp: Computational Wavelet Analysis. R package version 1.1. At https://CRAN.R-project.org/package=WaveletComp (Date accessed: 15-11-2019) (2018).

  • 111.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. At http://www.r-project.org/ (Date accessed: 15-11-2019) (2019).

  • 112.

    Healy, K. et al. SIDER: An R package for predicting trophic discrimination factors of consumers based on their ecology and phylogenetic relatedness. Ecography 41(8), 1393–1400 (2018).

    • Article
    • Google Scholar
  • 113.

    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology 80(3), 595–602 (2011).

  • 114.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. At https://CRAN.R-project.org/package=nlme (Date accessed: 15-11-2019) (2019).

  • 115.

    Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecology Letters 14(9), 948–958 (2011).

  • 116.

    Roughgarden, J. Evolution of niche width. American Naturalist 106, 683–718 (1972).

    • Article
    • Google Scholar
  • 117.

    Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M. & Svanbäck, R. Measuring individual‐level resource specialization. Ecology 83(10), 2936–2941 (2002).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Mars 2020: The search for ancient life is on

    A material’s insulating properties can be tuned at will