in

Bioactive carbon improves nitrogen fertiliser efficiency and ecological sustainability

  • 1.

    World Bank, World Development Report 2008: Agriculture for Development (World Bank, Washington, DC (2008).

  • 2.

    Royal Society of London, Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture Royal Society, London, (2009).

  • 3.

    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America 108, 20260–20264 (2011).

  • 4.

    McCarthy, A. et al. Global food security – Issues, challenges and technological solutions. Trends in Food Science &. Technology 77, 11–20 (2018).

    • CAS
    • Google Scholar
  • 5.

    Coomes, O. T. et al. Leveraging total factor productivity growth for sustainable and resilient farming. Nature Sustainability 2, 22–28 (2019).

    • Article
    • Google Scholar
  • 6.

    Stoate, C. et al. Ecological impacts of arable intensification in Europe. Journal of Environmental Management 63, 337–65 (2001).

  • 7.

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

  • 8.

    Suweis, S., Carr, J. A., Maritan, A., Rinaldo, A. & D’Odorico, P. Resilience and reactivity of global food security. Proceedings of the Natural Academy of Science Proceedings of the National Academy of Sciences of the United States of America 112, 6902–6907 (2015).

  • 9.

    Cottrell, R. S. et al. Food production shocks across land and sea. Nature Sustainability 2, 130–137 (2019).

    • Article
    • Google Scholar
  • 10.

    UN General Assembly 2015. Transforming our world: the 2030 Agenda for Sustainable Development, A/RES/70/1, available at, https://www.refworld.org/docid/57b6e3e44.html [accessed 9 February 2019]

  • 11.

    Godfray, H. C. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

  • 12.

    Lu, C. & Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth System Science. Data 9, 181–192 (2017).

    • Google Scholar
  • 13.

    Chen, Y. et al. China and India lead in greening of the world through land-use management. Nature Sustainability 2, 122–129 (2019).

  • 14.

    Robertson, G. P. & Vitousek, P. M. Nitrogen in Agriculture: Balancing the Cost of an Essential Resource. Annual Review of Environment and Resources 34, 97–125 (2009).

    • Article
    • Google Scholar
  • 15.

    Dawson, C. J. & Hilton, J. Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus. Food Policy 36, 14–22 (2011).

    • Article
    • Google Scholar
  • 16.

    Guignard, M. S. et al. Impacts of nitrogen and phosphorus: From genomes to natural ecosystems and agriculture. Frontiers in Ecology and Evolution 5, 1–9 (2017).

    • Article
    • Google Scholar
  • 17.

    Camargo, J. A. & Alonso, A. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International. 32, 831–849 (2006).

  • 18.

    International Panel on Climate Change. Climate change and land. IPCC special report, www.ipcc.ch/srccl (2019).

  • 19.

    Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).

  • 20.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2012).

  • 21.

    Sylvia, D. M. Principles and Applications of Soil Microbiology. Upper Saddle River: Prentice Hall (1998).

  • 22.

    Zak, D. R., Holmes, W. E., White, D. C., Peacock, A. D. & Tilman, D. Plant diversity, soil microbial communities, and ecosystem function: Are there any links. Ecology 84, 2042–2050 (2003).

    • Article
    • Google Scholar
  • 23.

    Bardgett, R. D., Bowman, W. D., Kaufmann, R. & Schmidt, S. K. A temporal approach to linking aboveground and belowground ecology. Trends in Ecology and. Evolution. 20, 634–641 (2005).

  • 24.

    Schimel, J. P. & Bennett, J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 85, 591–602 (2004).

    • Article
    • Google Scholar
  • 25.

    van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11, 296–310 (2008).

  • 26.

    Bengtson, P., Barker, J. & Grayston, S. J. Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects. Ecology and Evolution 2, 1843–1852 (2012).

  • 27.

    Burdick, E. M. Commercial humates for agriculture and the fertilizer industry. Economic Botany 19, 152–156 (1965).

    • Article
    • Google Scholar
  • 28.

    Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nature Reviews Microbiology 18, 35–46 (2019).

  • 29.

    Ouni, Y. et al. The role of humic substances in mitigating the harmful effects of soil salinity and improve plant productivity. International Journal of Plant Production 3, 353–374 (2014).

    • Google Scholar
  • 30.

    Canellas, L. P. et al. Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae. 196, 15–27 (2015).

  • 31.

    Asli, S. & Neumann, P. M. Rhizosphere humic acid interacts with root cell walls to reduce hydraulic conductivity and plant development. Plant and Soil 336, 313–322 (2010).

  • 32.

    de Santiago, A., Exposito, A., Quintero, J. M., Carmona, E. & Delgado, A. Adverse effects of humic substances from different origin on lupin as related to iron sources. Journal of Plant Nutrition 33, 143–156 (2010).

  • 33.

    Hartz, T. K. & Bottoms, G. Humic substances generally ineffective in improving vegetable crop nutrient uptake or productivity. Hortscience 45, 906–910 (2010).

    • Article
    • Google Scholar
  • 34.

    Mahoney, K. J., McCreary, C., Depuydt, D. & Gillard, C. L. Fulvic and humic acid fertilizers are ineffective in dry bean. Canadian Journal of Plant Science 97, 202–205 (2017).

    • CAS
    • Google Scholar
  • 35.

    Olk, D. C., Dinnes, D. L., Scoresby, J. R., Callaway, C. R. & Darlington, J. W. Humic products in agriculture: potential benefits and research challenges—a review. Journal of Soils and Sediments 18, 2881–2891 (2018).

    • Article
    • Google Scholar
  • 36.

    Quilty, J. R. & Cattle, S. R. Use and understanding of organic amendments in Australian agriculture: a review. Soil Research 49, 1–26 (2011).

    • Article
    • Google Scholar
  • 37.

    Billingham, K. L. Humic products – potential or presumption for agriculture? Can humic products improve my soil? Proceedings of the 27th Annual Conference of the Grasslands Society of New South Wales 27, 43–50 (2012).

    • Google Scholar
  • 38.

    Bell, N. G., Michalchuk, A. A., Blackburn, J. W., Graham, M. C. & Uhrin, D. Isotope-Filtered 4D NMR Spectroscopy for Structure Determination of Humic Substances. Angewandte Chemie International Edition English 54, 8382–8385 (2015).

  • 39.

    Gerke., G. Concepts and misconceptions of humic substances as the stable part of organic matter: a review. Agronomy 8, 76, https://doi.org/10.3390/agronomy8050076 (2018).

  • 40.

    Shah, Z. H. et al. Humic Substances: Determining Potential Molecular Regulatory Processes in. Plants. Frontiers in Plant Science 9, 263, https://doi.org/10.3389/fpls.2018.00263 (2018).

  • 41.

    Kleber, M. et al. Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modelling concepts and temperature sensitivity. Global Change Biology 17, 1097–1107 (2011).

  • 42.

    Azeem, B., KuShaari, K. Z., Man, Z. B., Basit, A., & Trinh, T.H. Review on materials & methods to produce controlled release coated urea fertilizer. Journal of Controlled Release 181, 11–21

  • 43.

    Trinh, T. H., Kushaari, K., Shuib, A. S., Ismail, L. & Azeem, B. Modelling the release of nitrogen from controlled release fertiliser: Constant and decay release. Biosystems Engineering 130, 34–42 (2015).

    • Google Scholar
  • 44.

    Li, Y. et al. Synthesis and performance of bio-based epoxy coated urea as controlled release fertilizer. Progress in Organic Coatings 119, 50–56 (2018).

  • 45.

    Hewitt, A. E. 1992. New Zealand Soil Classification. DSIR Land Resources Scientific Report 19.

  • 46.

    Klein, D. A. & Paschke, M. W. A soil microbial community structural-functional index: the microscopy-based total/active/active fungal/bacterial (TA/AFB) biovolumes ratio. Applied Soil Ecology 14, 257–268 (2000).

    • Article
    • Google Scholar
  • 47.

    Muyzer, G., de Waal, E. & Uitterlinden, A. G. Profiling complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 59, 695–70 (1993).

  • 48.

    Mühling, M., Woolven-Allen, J. & Murrell, J. C, & Joint, I. Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME Journal. 2, 379–392 (2008).

  • 49.

    Vainio, E. J. & Hantula, J. Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycological Research 104, 927–936 (2000).

  • 50.

    Shiomura, Y., Morimoto, S., Hoshino, Y. T., Uchida, Y., Akiyama, H. & Hayatsu, M. Comparison among amoA primers suited for quantification and diversity analyses of ammonia oxidising bacteria in Soil. Microbes and Environments 27, 94–98 (2012).

    • Article
    • Google Scholar
  • 51.

    R Core Development Team 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. URL, https://www.R-project.org/

  • 52.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6, https://CRAN.R-project.org/package=vegan (2019).

  • 53.

    Wang, Y., Nauman, U., Wright, S. T. & Warton, D. I. mvabund- a R package for model –based analysis of multivariate abundance data. Methods in Ecology and Evolution 3, 471–474 (2012).

    • Article
    • Google Scholar
  • 54.

    Risk, W. H. Use of nitrogen fertilisers on the Southland plains. In: Lynch P. B., editor. Nitrogen fertilisers in New Zealand agriculture. Wellington: New Zealand Institute of Agricultural Science; p 149 – 158 (1982).

  • 55.

    Smith, L. C., Morton, J. D., Catto, W. D. & Trainor, K. D. Nitrogen responses on pasture in the southern South Island of New Zealand. Proceedings of the New Zealand Grasslands Association 62, 19–23 (2000).

    • Google Scholar
  • 56.

    Schofield. P., Watt, N., & Schofield, M. Using Humic compounds to improve efficiency of fertiliser nitrogen. In: Currie LD, Christensen CL. editors. Advanced Nutrient Management: Gains from the Past – Goals for the Future. Massey University, Palmerston North: Fertilizer and Lime Research Centre Occasional Report No. 25 (2013).

  • 57.

    White, R. E., Wellings, S. R. & Bell, J. P. Seasonal variations in nitrate leaching in structured clay soils under mixed land use. Agricultural Water Management 7, 391–410 (1983).

    • Article
    • Google Scholar
  • 58.

    Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transactions Royal Society London B Biological Sciences 368(1621), 20130122 (2013).

  • 59.

    Simpson, A. C., Zabowski, D., Rochefort, R. M. & Edmonds, R. L. Increased microbial uptake and plant nitrogen availability in response to simulated nitrogen deposition in alpine meadows. Geoderma 336, 68–80 (2019).

  • 60.

    Lipson, D. A., Schmidt, S. K., Russell, K. & Monson, R. K. Links between microbial population dynamics and nitrogen availability in an alpine ecosystem. Ecology 80, 1623–1631 (1999).

    • Article
    • Google Scholar
  • 61.

    Gerke, J., Meyer, U. & Römer, W. Phosphate, Fe and Mn uptake of N2 fixing red clover and ryegrass from an Oxisol as affected by P and model humic substances application. 1. Plant parameters and soil solution composition. Journal of Plant Nutrition and Plant Science 158, 261–268 (1995).

    • CAS
    • Google Scholar
  • 62.

    Little, K. R., Rose, M. T., Jackson, W. R., Cavagnaro, T. R. & Patti., A. F. Do lignite-derived organic amendments improve early-stage pasture growth and key soil biological and physicochemical properties? Crop and Pasture. Science 65, 899–910 (2014).

    • CAS
    • Google Scholar
  • 63.

    Pinton, R., Cesco. S., & Varanini, Z. Role of humic substances on the rhizosphere. In: Senesi N, Xing B, Huang PM. editors. Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems. Hoboken (NJ): John Wiley & Sons. p. 341–359 (2009).

  • 64.

    Van Trump, J. I., Sun, Y. & Coates, J. D. Microbial interactions with humic substances. Advances in Applied Microbiology 60, 55–95 (2016).

  • 65.

    Lipcznska-Kochany, E. Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review. Chemosphere 202, 420–437 (2018).

  • 66.

    Gao, T. G. et al. Nodulation Characterization and Proteomic Profiling of Bradyrhizobium liaoningense CCBAU05525 in Response to Water-Soluble Humic Materials. Scientific Reports 5, 10836, https://doi.org/10.1038/srep10836 (2015).

  • 67.

    Nardi, S., Pizzeghello, D., Muscolo, A. & Vianello, A. Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry 34, 1527–1536 (2002).

  • 68.

    Chen, Y., Clapp, C. E. & Magen, H. Mechanisms of plant growth stimulation by humic substances: The role of organo-iron complexes. Soil Science and Plant Nutrition 50, 1089–1095 (2004).

  • 69.

    Muscolo, A., Sidari, M. & Nardi, S. Humic substance: relationship between structure and activity. Deeper information suggests univocal findings. Journal of Geochemical Exploration 129, 57–63 (2013).

  • 70.

    Kalis, E. J., Temminghoff, E. J., Weng, L. & van Riemsdijk, W. H. Effects of humic acid and competing cations on metal uptake by Lolium perenne. Environmental Toxicology and Chemistry 25, 702–711 (2006).

  • 71.

    Mora, V. et al. Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cyto-kinins, polyamines and mineral nutrients. Journal of Plant Physiology 167, 633–642 (2010).

  • 72.

    Maibodi, N. D., Kafi, M., Nikbakht, A. & Rejali, F. Effect of Foliar Applications of Humic Acid on Growth, Visual Quality, Nutrients Content and Root Parameters of Perennial Ryegrass (Lolium Perenne L.). Journal of Plant Nutrition 38, 224–236 (2015).

  • 73.

    Nardi, S., Pizzeghello, D., Schiavon, M. & Ertani, A. Plant biostimulants. Physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Scientica Agricola 73, 18–23 (2016).

  • 74.

    Imbufe, A. et al. Effects of potassium humate on aggregate stability of two soils from Victoria Australia. Geoderma 125, 321–330 (2005).

  • 75.

    Lobartini, J. C. et al. The geochemical nature and agricultural importance of commercial humic matter. Science of the Total Environment 113, 1–15 (1992).

  • 76.

    Rose, M. T., Patti, A. F., Little, K. R. & Brown, A. L. A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Advances In Agronomy 124, 37–89 (2014).


  • Source: Ecology - nature.com

    Mars 2020: The search for ancient life is on

    A material’s insulating properties can be tuned at will