in

Pesticide pollution in freshwater paves the way for schistosomiasis transmission

  • 1.

    WHO. Neglected tropical diseases. Schistosomiasis and Soiltransmitted Helminthiases: Number of People Treated in 2017, https://www.who.int/neglected_diseases/resources/who_wer9350/en/ (2018).

  • 2.

    King, C. H. & Dangerfield-Cha, M. The unacknowledged impact of chronic schistosomiasis. Chronic Illness 4, 65–79, https://doi.org/10.1177/1742395307084407 (2008).

  • 3.

    Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet 380.9859, 2095–2128 (2012).

    • Article
    • Google Scholar
  • 4.

    King, C. H. & Bertino, A.-M. Asymmetries of Poverty: Why Global Burden of Disease Valuations Underestimate the Burden of Neglected Tropical Diseases. PLOS Neglected Tropical Diseases 2, e209, https://doi.org/10.1371/journal.pntd.0000209 (2008).

  • 5.

    Colley, D. G., Bustinduy, A. L., Secor, W. E. & King, C. H. Human schistosomiasis. Lancet 383, 2253–2264, https://doi.org/10.1016/S0140-6736(13)61949-2 (2014).

  • 6.

    CDC. Travellers health: what is Schistosomiasis, https://wwwnc.cdc.gov/travel/diseases/schistosomiasis (2018).

  • 7.

    Hotez, P. J. et al. The Global Burden of Disease Study 2010: Interpretation and Implications for the Neglected Tropical Diseases. PLOS Neglected Tropical Diseases 8, e2865, https://doi.org/10.1371/journal.pntd.0002865 (2014).

  • 8.

    Pennisi, E. A tropical parasitic disease has invaded Europe, thanks to a hybrid of two infectious worms. Science. https://doi.org/10.1126/science.aav2480 (2018).

  • 9.

    Gurarie, D., Lo, N. C., Ndeffo-Mbah, M. L., Durham, D. P. & King, C. H. The human-snail transmission environment shapes long term schistosomiasis control outcomes: Implications for improving the accuracy of predictive modeling. PLOS Neglected Tropical Diseases 12, e0006514, https://doi.org/10.1371/journal.pntd.0006514 (2018).

  • 10.

    Secor, W. E. Water-based interventions for schistosomiasis control. Pathogens and Global Health 108, 246–254, https://doi.org/10.1179/2047773214y.0000000149 (2014).

    • Article
    • Google Scholar
  • 11.

    Chadeka, E. A. et al. A high-intensity cluster of Schistosoma mansoni infection around Mbita causeway, western Kenya: a confirmatory cross-sectional survey. Tropical Medicine and Health 47, 26, https://doi.org/10.1186/s41182-019-0152-y (2019).

  • 12.

    Lo, N. C. et al. Impact and cost-effectiveness of snail control to achieve disease control targets for schistosomiasis. Proceedings of the National Academy of Sciences 115, E583–E591, https://doi.org/10.1073/pnas.1708729114 (2018).

  • 13.

    Sokolow, S. H., Lafferty, K. D. & Kuris, A. M. Regulation of laboratory populations of snails (Biomphalaria and Bulinus spp.) by river prawns, Macrobrachium spp. (Decapoda, Palaemonidae): Implications for control of schistosomiasis. Acta Tropica 132, 64–74, https://doi.org/10.1016/j.actatropica.2013.12.013 (2014).

  • 14.

    Yousif, A., Hafez, S., Samia El Bardicy, S., Tadros, M. & Taleb, H. Experimental evaluation of Candonocypris novaezelandiae (Crustacea: Ostracoda) in the biocontrol of Schistosomiasis mansoni transmission. Asian Pacific Journal of Tropical Biomedicine 3, 267–272, https://doi.org/10.1016/S2221-1691(13)60061-1 (2013).

  • 15.

    Mone, H. et al. Ecological and molecular studies on emerging schistosomiasis mansoni in Dhofar Governorate, Sultanate of Oman. Tropical Medicine & International Health 8, 269–276, https://doi.org/10.1046/j.1365-3156.2003.01024.x (2003).

    • Article
    • Google Scholar
  • 16.

    Yeung, A. C. & Dudgeon, D. A manipulative study of macroinvertebrate grazers in Hong Kong streams: do snails compete with insects? Freshwater Biology 58(11), 2299–2309 (2013).

    • Google Scholar
  • 17.

    Barbosa, C. S., Barbosa, V. S., Nascimento, W. C., Pieri, O. S. & Araujo, K. Study of the snail intermediate hosts for Schistosoma mansoni on Itamaraca Island in northeast Brazil: spatial displacement of Biomphalaria glabrata by Biomphalaria straminea. Geospatial Health 8, 345–351 (2014).

    • Article
    • Google Scholar
  • 18.

    Johnson, P. T. J. & Thieltges, D. W. Diversity, decoys and the dilution effect: how ecological communities affect disease risk. Journal of Experimental Biology 213, 961–970, https://doi.org/10.1242/jeb.037721 (2010).

  • 19.

    Sokolow, S. H. et al. Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail-eating river prawns. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 372, https://doi.org/10.1098/rstb.2016.0127 (2017).

    • Article
    • Google Scholar
  • 20.

    Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology 11, 97–105 (2010).

  • 21.

    Liess, M. & Ohe, P. C. V. D. Analyzing effects of pesticides on invertebrate communities in streams. Environmental Toxicology and Chemistry: An International Journal 24, 954–965 (2005).

  • 22.

    Beketov, M. A., Kefford, B. J., Schäfer, R. B. & Liess, M. Pesticides reduce regional biodiversity of stream invertebrates. Proceedings of the National Academy of Sciences 110, 11039–11043, https://doi.org/10.1073/pnas.1305618110 (2013).

  • 23.

    Liess, M. & Schulz, R. Linking insecticide contamination and population response in an agricultural stream. Environmental Toxicology and Chemistry 18, 1948–1955 (1999).

  • 24.

    London, L., Dalvie, M. A., Nowicki, A. & Cairncross, E. Approaches for regulating water in South Africa for the presence of pesticides. Water SA 31, 53–60, https://doi.org/10.4314/wsa.v31i1.5121 (2005).

  • 25.

    Musa, S., Gichuki, J. W., Raburu, P. O. & Aura, C. M. Organochlorine and organophosphorus pesticide residues in water and sediment from Yala/Nzoia River within Lake Victoria Basin, Kenya. Journal of Ecology and the Natural Environment 3, 392–399 (2011).

    • CAS
    • Google Scholar
  • 26.

    V D Ohe, P. C. & Liess, M. Relative sensitivity distribution of aquatic invertebrates to organic and metal compounds. Environmental Toxicology and Chemistry 23, 150–156 (2004).

    • Article
    • Google Scholar
  • 27.

    Halstead, N. T. et al. Agrochemicals increase risk of human schistosomiasis by supporting higher densities of intermediate hosts. Nature Communications 9, 837, https://doi.org/10.1038/s41467-018-03189-w (2018).

  • 28.

    Van den Brink, P. J., Hattink, J., Bransen, F., Van Donk, E. & Brock, T. C. Impact of the fungicide carbendazim in freshwater microcosms. II. Zooplankton, primary producers and final conclusions. Aquatic Toxicology (Amsterdam, Netherlands) 48, 251–264 (2000).

    • Article
    • Google Scholar
  • 29.

    Knillmann, S., Orlinskiy, P., Kaske, O., Foit, K. & Liess, M. Indication of pesticide effects and recolonization in streams. Science of The Total Environment 630, 1619–1627, https://doi.org/10.1016/j.scitotenv.2018.02.056 (2018).

  • 30.

    Liess, M. & von der Ohe, P. C. Analyzing effects of pesticides on invertebrate communities in streams. Environmental Toxicology and Chemistry 24, 954–965, https://doi.org/10.1897/03-652.1 (2005).

  • 31.

    Sang, H. C., Muchiri, G., Ombok, M., Odiere, M. R. & Mwinzi, P. N. M. Schistosoma haematobium hotspots in south Nyanza, western Kenya: prevalence, distribution and co-endemicity with Schistosoma mansoni and soil-transmitted helminths. Parasites Vectors 7, 12, https://doi.org/10.1186/1756-3305-7-125 (2014).

    • Article
    • Google Scholar
  • 32.

    Lewis, K. A., Green, A., Tzilivakis, J. & Warner, D. The Pesticide Properties Database PPDB, http://sitem.herts.ac.uk/aeru/iupac/index.htm (2019).

  • 33.

    Tomlin, C. The Pesticide Manual: A World Compendium. 12 edn, 1250 (British Crop Protection Council, 2000).

  • 34.

    Schaefer, R. B. et al. Thresholds for the Effects of Pesticides on Invertebrate Communities and Leaf Breakdown in Stream Ecosystems. Environmental Science & Technology 46, 5134–5142, https://doi.org/10.1021/es2039882 (2012).

  • 35.

    Becker, J. M. & Liess, M. Species Diversity Hinders Adaptation to Toxicants. Environmental Science & Technology 51, 10195–10202, https://doi.org/10.1021/acs.est.7b02440 (2017).

  • 36.

    Liess, M., Schulz, R., Liess, M. H. D., Rother, B. & Kreuzig, R. Determination of insecticide contamination in agricultural headwater streams. Water Res. 33, 239–247, https://doi.org/10.1016/s0043-1354(98)00174-2 (1999).

  • 37.

    Münze, R. et al. Pesticides from wastewater treatment plant effluents affect invertebrate communities. Science of the Total Environment 599–600, 387–399, https://doi.org/10.1016/j.scitotenv.2017.03.008 (2017).

  • 38.

    Kandie, F. J. et al. Occurrence and risk assessment of organic micropollutants in freshwater systems within the Lake Victoria South Basin, Kenya. (2019). Science of The Total Environment: 136748 (2020).

  • 39.

    International Agency for Research on Cancer. “Biological agents.” IARC monographs on the evaluation of carcinogenic risks to humans (2012).

  • 40.

    King, C. H., Sutherland, L. J. & Bertsch, D. Systematic Review and Meta-analysis of the Impact of Chemical-Based Mollusciciding for Control of Schistosoma mansoni and S. haematobium Transmission. PLoS Negl. Trop. Dis. 9, e0004290, https://doi.org/10.1371/journal.pntd.0004290 (2015).

  • 41.

    Odhiambo, G. O. et al. Low Levels of Awareness Despite High Prevalence of Schistosomiasis among Communities in Nyalenda Informal Settlement, Kisumu City, Western Kenya. Plos Neglected Tropical Diseases 8, 8, https://doi.org/10.1371/journal.pntd.0002784 (2014).

    • Article
    • Google Scholar
  • 42.

    Mwandawiro, C. et al. Results of a national school-based deworming programme on soil-transmitted helminths infections and schistosomiasis in Kenya: 2012-2017. Parasites Vectors 12, 76–76, https://doi.org/10.1186/s13071-019-3322-1 (2019).

  • 43.

    Bruun, B. & Aagaard-Hansen, J. The Social Context of Schistosomiasis and Its Control: An Introduction and Annotated Bibliography. 25–33 (WHO, 2008).

  • 44.

    EFSA Panel on Plant Protection Products and their Residues (PPR). Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA Journal 11, 3290, https://doi.org/10.2903/j.efsa.2013.3290 (2013).

  • 45.

    Pest Control Products Board Kenya, Pest Control Products (Disposal) Regulations, 2006.

  • 46.

    Wogram, J. & Liess, M. Rank ordering of macroinvertebrate species sensitivity to toxic compounds by comparison with that of daphnia magna. Bull. Environ. Contam. Toxicol. 67, 360–367 (2001).

  • 47.

    Beketov, M. A. & Liess, M. Acute and delayed effects of the neonicotinoid insecticide thiacloprid on seven freshwater arthropods. Environmental Toxicology and Chemistry 27, 461–470, https://doi.org/10.1897/07-322r.1 (2008).

  • 48.

    Liess, M. & Schulz, R. Chronic effects of short-term contamination with the pyrethroid insecticide fenvalerate on the caddisfly Limnephilus lunatus. Hydrobiologia 324, 99–106, https://doi.org/10.1007/bf00018170 (1996).

  • 49.

    Beketov, M. A. & Liess, M. Acute contamination with esfenvalerate and food limitation: Chronic effects on the mayfly, Cloeon dipterum. Environmental Toxicology and Chemistry 24, 1281–1286, https://doi.org/10.1897/04-256r1.1 (2005).

  • 50.

    Shen, C., Lia, Q., Titi, H. H. & Li, J. Turbidity of stormwater runoff from highway construction sites. Journal of Environmental Engineering 144, https://doi.org/10.1061/(ASCE)EE.1943-7870.0001407 (2018).

    • Article
    • Google Scholar
  • 51.

    Woolhouse, M. E. J. & Chandiwana, S. K. Population dynamics model for Bulinus globosus, intermediate host for Schistosoma haematobium, in river habitats. Acta Tropica 47, 151–160, https://doi.org/10.1016/0001-706X(90)90021-Q (1990).

  • 52.

    Liess, M. et al. Culmination of low-dose pesticide effects. Environmental Science & Technology 47, 8862–8868, https://doi.org/10.1021/es401346d (2013).

  • 53.

    Alexandratos, N. & Bruinsma, J. World agriculture towards 2030/2050: the 2012 revision. (FAO, Rome, 2012).

  • 54.

    Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284, https://doi.org/10.1126/science.1057544 (2001).

  • 55.

    Kefford, B. J. In Encyclopedia of Aquatic Ecotoxicology (eds J. F. Férard & C. Blaise) 957–966 (Springer Netherlands, 2013).

  • 56.

    USEPA. ECOTOXicology Knowledgebase, http://cfpub.epa.gov/ecotox/help.cfm?help_id=DATASTEWARD&help_type=define&help_back=1 (2019).

  • 57.

    Frandsen, F. & Christensen, N. Introductory guide to the identification of cercariae from African freshwater snails with special reference to cercariae of trematode species of medical and veterinary importance Taxonomic key. Acta Tropica (1984).

  • 58.

    Brown, D. S. Freshwater Snails of Africa and Their Medical Importance. (CRC press, 1994).

  • 59.

    Day, J., Stewart, B., De Moor, I. & Louw, A. Guides to the Freshwater Invertebrates of Southern Africa: Volume 2 Crustacea I–Notostraca, Anostraca, Conchostraca and Cladocera. WRC Report no. TT 121/00. Water Research Commission, Pretoria, 126 (1999).

  • 60.

    Day, J., Stewart, B., De Moor, I. & Louw, A. Guides to the Freshwater Invertebrates of Southern Africa–Vol. 4: Crustacea III Bathynellacea, Amphipoda, Isopoda, Spelaeogriphacea, Tanaidacea and Decapoda. Water Research Commission Report TT141/01, Pretoria (2001).

  • 61.

    Day, J. & de Moor, I. Guides to the Freshwater Invertebrates of Southern Africa: Volume 6: Arachnida and Mollusca (Araneae, water mites and Mollusca). WRC Report no TT182/02. Water Research Commission, Pretoria 24 (2002).

  • 62.

    Day, J. A. Guides to the Freshwater Invertebrates of Southern Africa: Ostracoda, Copepoda and Branchiura. Crustacea II. (Water Research Commission, 2001).

  • 63.

    Day, J., Harrison, A. & De Moor, I. Guides to the freshwater invertebrates of southern Africa. Volume 9: Diptera. WRC Report No. TT 201/02. Water Research Commission, Pretoria, South Africa (2002).

  • 64.

    Day, J. A. Guides to Freshwater Invertebrates of Southern Africa: The Protozoans, Porifera, Cnidaria, Platyhelminthes, Nemertea, Rotifera, Nematoda, Nematomorpha, Gastrotrichia, Bryozoa, Tardigrada, Polychaeta, Oligochaeta & Hirudinea. Non-arthropods. (Water Research Commission, 2002).

  • 65.

    de Moor, I. Guides to Freshwater Invertebrates of Southern Africa: Ephemeroptera, Odonata & Plecoptera. Insecta I. (Water Research Commission, 2003).

  • 66.

    de Moor, I. Guides to Freshwater Invertebrates of Southern Africa: Hemiptera, Megaloptera, Neuroptera, Trichoptera & Lepidoptera. Insecta II. (Water Research Commission, 2003).

  • 67.

    Harrison, J. d. G. Guides to the freshwater invertebrates of Southern Africa. Volume 10: Coleoptera. African Entomology 17, 235–238 (2009).

    • Article
    • Google Scholar
  • 68.

    Dickens, C. W. & Graham, P. M. The South African Scoring System (SASS) Version 5 Rapid Bioassessment Method for Rivers. African Journal of Aquatic Science 27, 1–10, https://doi.org/10.2989/16085914.2002.9626569 (2002).

    • Article
    • Google Scholar
  • 69.

    R: A language and environment for statistical computing v. 3.5.2, https://www.r-project.org/, (R Foundation for Statistical Computing, Vienna, Austria, 2018).

  • 70.

    Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. Dose-Response Analysis Using R. Plos One 10, https://doi.org/10.1371/journal.pone.0146021 (2015).

    • Article
    • Google Scholar
  • 71.

    Fox, J. & Weisberg, S. Visualizing Fit and Lack of Fit in Complex Regression Models with Predictor Effect Plots and Partial Residuals. Journal of Statistical Software 1, https://doi.org/10.18637/jss.v087.i09 (2018).

  • 72.

    DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models v. 0.2.0 (2018).

  • 73.

    VGAM: Vector Generalized Linear and Additive Models. R package version 1.0-6 (2018).

  • 74.

    Zeileis, A., Kleiber, C. & Jackman, S. Regression Models for Count Data in R. Journal of Statistical Software 27, 25, https://doi.org/10.18637/jss.v027.i08 (2008).

    • Article
    • Google Scholar
  • 75.

    Mac Nally, R. Hierarchical partitioning as an interpretative tool in multivariate inference. Australian Journal of Ecology 21, 224–228, https://doi.org/10.1111/j.1442-9993.1996.tb00602.x (1996).

    • Article
    • Google Scholar
  • 76.

    hier.part: Hierarchical Partitioning. R package version 1.0-4, https://cran.r-project.org/web/packages/hier.part/hier.part.pdf (2013).

  • 77.

    vegan: Community Ecology Package. R package version 2.5–4, https://cran.r-project.org/web/packages/vegan/index.html (2019).

  • 78.

    Mwinzi, P. N. M. et al. Integrated community-directed intervention for schistosomiasis and soil transmitted helminths in western Kenya – a pilot study. Parasites & Vectors 5, 10, https://doi.org/10.1186/1756-3305-5-182 (2012).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Podcast: Mapping fruit flies’ neural circuitry, and perfecting the properties of metallic glass

    Deep cuts in greenhouse emissions are tough but doable, experts say