in

Responses of soil microarthropod taxon (Hexapoda: Protura) to natural disturbances and management practices in forest-dominated subalpine lake catchment areas

  • 1.

    Fischer, A., Marshall, P. & Camp, A. Disturbances in deciduous temperate forest ecosystems of the northern hemisphere: their effects on both recent and future forest development. Biodivers. Conserv. 22, 1863–1893 (2013).

    • Article
    • Google Scholar
  • 2.

    Frelich L. E. Forest dynamics and disturbance regimes. (Cambridge, Cambridge University Press, 2002).

  • 3.

    Seidl, R., Schelhaas, M.-J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4, 806–810 (2014).

  • 4.

    Thon, D. & Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Bio. Rev. 91, 760–781 (2016).

    • Article
    • Google Scholar
  • 5.

    Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).

    • Article
    • Google Scholar
  • 6.

    Bonan, G. B. Forests and climate change: forcing, feedbacks and the climate benefits of forests. Science 320, 1444–1449 (2008).

  • 7.

    Lukac, M. Soil biodiversity and environmental change in European forests. Cent. Eur. For. J. 63, 59–65 (2017).

    • Google Scholar
  • 8.

    Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).

  • 9.

    Hättenschwiler, S., Tiunov, A. V. & Scheu, S. Biodiversity and litter decomposition in terrestrial ecosystems. Ann. Rev. Ecol. Evol. Syst. 36, 191–218 (2005).

    • Article
    • Google Scholar
  • 10.

    Lavelle, P., Lattaud, C., Trigo, D. & Barois, I. Mutualism and biodiversity in soils in The Significance and Regulation of Soil Biodiversity (eds. Collins, H. P., Robertson, G. P. & Klug, M. J.) 23–33 (Kluwer Academic Publishers, Dordrecht, 1995).

  • 11.

    Grandy, A. S., Wieder, W. R., Wickings, K. & Kyker-Snowman, E. Beyond microbes: Are fauna the next frontier in soil biogeochemical models? Soil Biol. Biochem. 102, 40–44 (2016).

  • 12.

    Rusek, J. Soil microstructures-contributions on specific soil organisms. Quaest. Entomol. 21, 497–514 (1985).

    • Google Scholar
  • 13.

    Thorn, S., Bässler, C., Svoboda, M. & Müller, J. Effects of natural disturbances and salvage logging on biodieversity – lessons from the Bohemian Forest. Forest Ecol. Manag. 385, 113–118 (2016).

    • Google Scholar
  • 14.

    Coleman, D. C., Callaham, M. A. Jr. & Crossley, D. A. Jr. Fundamentals of Soil Ecology, third edition, (London, Elsevier Academic Press, 2018).

  • 15.

    Bastida, F., Zsolnay, A., Hernández, T. & García, C. Past, present and future of soil quality indices: A biological perspective. Geoderma 147, 159–171 (2008).

  • 16.

    Marshall, V. G. Impacts of forest harvesting on biological processes in northern forest soils. Forest Ecol. Manag. 133, 43–60 (2000).

    • Article
    • Google Scholar
  • 17.

    Coyle, D. R. et al. Soil fauna responses to natural disturbances, invasive species, and global climate change: current state of the science and call to action. Soil Biol. Biochem. 110, 116–133 (2017).

  • 18.

    Lisa, C. et al. Impact of wildfire on the edaphic microarthropod community in a Pinus pinaster forest in central Italy. iForest 8, 874–883 (2015).

    • Article
    • Google Scholar
  • 19.

    Sterzyńska, M. & Skłodowski, J. Divergence of soil microarthropod (Hexapoda: Collembola) recovery patterns during natural regeneration and regeneration by planting of windthrow pine forests. Forest Ecol. Manag. 429, 414–424 (2018).

    • Article
    • Google Scholar
  • 20.

    Farská, J., Starý, J. & Rusek, J. Soil microarthropods in non-intervention montane spruce forest regenerating after bark-beetle outbreak. Ecol. Res. 29, 1087–1096 (2014).

    • Article
    • Google Scholar
  • 21.

    Nosek, J. Niches of Protura in biogeocoenoses. Pedobiologia 15, 257–265 (1975).

    • Google Scholar
  • 22.

    Stumpp, J. Zur Ökologie einheimischer Proturen (Arthropoda: Insecta) in Fichtenforsten. Zool. Beitr. 33, 335–432 (1990).

    • Google Scholar
  • 23.

    Bluhm, S. L. et al. Protura are unique: First evidence of specialized feeding on ectomycorrhizal fungi in soil invertebrates. BMC Ecology 19, 10, https://doi.org/10.1186/s12898-019-0227-y (2019).

  • 24.

    Shrubovych, J. & Sterzyńska, M. Diversity and distributional pattern of soil microarthropods (Protura) across a transitional zone in Ukraine. Can. Entomol. 50, 628–638 (2017).

    • Article
    • Google Scholar
  • 25.

    Sterzyńska, M., Orlov, O. & Shrubovych, J. Effect of hydrologic disturbance regimes on Protura variability in a river floodplain. Ann. Zool. Fenn. 49, 309–320 (2012).

    • Article
    • Google Scholar
  • 26.

    Kaňa, J., Kopáček, J., Tahovská, K. & Šantrůčková, H. Tree dieback and related changes in nitrogen dynamics modify the concentration and proportions of cations on soil sorption complex. Ecol. Indic. 97, 319–328 (2019).

  • 27.

    Kopáček, J. & Vrba, J. Integrated ecological research of catchment–lake ecosystems in the Bohemian Forest (Central Europe): A preface. Biologia 61, 363–370 (2006).

    • Google Scholar
  • 28.

    Cottle, R. Linking Geology and Biodiversity, English Nature Research Reports. Report 562, (English Nature, Northminster House, Peterborough PE1 1UA, 2004).

  • 29.

    Hahm, W. J., Riebe, C. S., Lukens, C. E. & Araki, S. Bedrock composition regulates mountain ecosystems and landscape evolution. PNAS 111, 3338–3343 (2014).

  • 30.

    Šantrůčková, H., Vrba, J., Picek, T. & Kopáček, J. Soil biochemical activity and phosphorus transformations and losses from acidified forest soils. Soil Biol. Biochem. 36, 1569–1576 (2004).

  • 31.

    Pánek, T. & Hradecký, J. Landscapes and Landforms of the Czech Republic. (Switzerland, Springer, 2016).

  • 32.

    Šantrůčková, H. et. al. About mountain spruces from the Bohemian Forest. A guide to the national parks’ forest ecosystems. (Faculty of Science, University of South Bohemia and Czech Society for Ecology, Vimperk, 2010).

  • 33.

    Kopáček, J., Brzakova, M., Hejzlar, J., Porcal, P. & Vrba, J. Nutrient cycling in a strongly acidified mesotrophic lake. Limnol. Oceanogr. 49(4), 1202–1213 (2004).

  • 34.

    Kopáček, J. et al. Physical, chemical, and biochemical characteristics of soils in watersheds of the Bohemian Forest lakes: I. Plešné Lake. Silva Gabreta 8, 43–66 (2002a).

    • Google Scholar
  • 35.

    Kopáček, J. et al. Physical, chemical, and biochemical characteristics of soils in watersheds of the Bohemian Forest lakes: II. Čertovo and Černé Lakes. Silva Gabreta 8, 63–64 (2002b).

    • Google Scholar
  • 36.

    Nosek, J. The European Protura. Their taxonomy, ecology and distribution. With keys for determination, (Muséum d’Histoire Naturelle, Genève, 1973).

  • 37.

    Shrubovych, J., Bartel, D., Szucsich, N. U., Resch, M. C. & Pass, G. Morphological and genetic analysis of the Acerentomon doderoi group (Protura: Acerentomidae) with description of A. christiani sp. nov. PLoS ONE 11, e0148033 (2016).

  • 38.

    Galli, L., Shrubovych, J., Bu, Y. & Zinni, M. Genera of the Protura of the World: diagnosis, distribution, and key. ZooKeys 772, 1–45 (2018).

    • Article
    • Google Scholar
  • 39.

    Shrubovych, J. & Bernard, E. C. A key for the determination of European species of Eosentomon Berlese, 1909 (Protura: Eosentomata: Eosentomidae). ZooKeys 742, 1–12 (2018).

    • Article
    • Google Scholar
  • 40.

    Kopáček, J. & Hejzlar, J. Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. Int. J. Environ. Anal. Chem. 53, 173–183 (1993).

    • Article
    • Google Scholar
  • 41.

    Thomas, G. Exchangeable cations in Methods of Soil Analysis, Part 2, 2nd (eds. Page, A. L., Miller, R. H. & Keeney, D. R.) 159–166 (America Society of Agronomy and Soil Science of America, Madison WI, 1982).

  • 42.

    Wardle, D. A. A comparative assessment of the factors which influence microbial biomass carbon and nitrogen levels in soil. Biol. Rev. 67, 321–358 (1992).

    • Article
    • Google Scholar
  • 43.

    Nouri, E., Breullin-Sessoms, F., Feller, U. & Reinhardt, D. Phosphorous and nitrogen regulate Arbuscular Mycorrhizal Symbiosis in Petunia hybrid. PLoS ONE 9(3), e908451 (2014).

  • 44.

    Pinheiro, J., Bates, D., DebRoy, S. & Sarker, D, Core Team R nlm: Linear and Nonlinear Mixed Effects Models. R package version 3.1-13. http://CRAN.Rproject.org/package=nlme (2017).

  • 45.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. ImerTest: Tests for Random and Fixed Effects for Linear Mixed Effect Models (Imer Objects of lme4 Package), R Package Version 2.0-6. http://cran.r-project.org/package=lmerTest (2014).

  • 46.

    Lepš, J. & Šmilauer, P. Multivariate analysis of ecological data using CANOCO. (Cambridge University Press, Cambridge, UK, 2003).

  • 47.

    ter Braak, C. J. F & Šmilauer, P. Canoco reference manual and user’s guide: software for ordination (version 5.0). (Microcomputer Power, Ithaca, Ny, USA, 2012).

  • 48.

    Šmilauer, P. & Jan Lepš, J. Multivariate Analysis of Ecological Data using CANOCO 5, 2nd edition. (Cambridge University Press, 2014).

  • 49.

    Core Team, R. R. A Language and Environment for Statistical Computing. https://www.R-project.org/ (2016).

  • 50.

    Teh, Y. A., Silver, V. L. & Scatena, F. A decade of belowground reorganization following multiple disturbances in a subtropical wet forest. Plant Soil 323, 197–212 (2009).

  • 51.

    Mills, C. G., Allen, R. J. & Blythe, R. A. Resource spectrum engineering by specialist species can shit the specialist-generalist balance. Theor. Ecol. https://doi.org/10.1007/s12080-019-00436-8 (2019).

  • 52.

    Platt, W. J. & Connell, J. H. Natural disturbances and directional replacement of species. Ecol. Monogr. 73(4), 507–522 (2003).

    • Article
    • Google Scholar
  • 53.

    Clavel, J., Juliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).

    • Article
    • Google Scholar
  • 54.

    Bakker, M. R. et al. Belowground biodiversity relates positively to ecosystem services of European forests. Front. For. Glob. Change 2, 6, https://doi.org/10.3389/ffgc.2019.00006 (2019).

    • Article
    • Google Scholar
  • 55.

    Setälä, H., Haimi, J. & Siira-Pietikäinen, A. Sensitivity of soil processes in northern forest soils: are management practices a treat? Forest Ecol. Manag. 133, 5–11 (2000).

    • Article
    • Google Scholar
  • 56.

    Pollierer, M. M. & Scheu, S. Driving factors and temporal fluctuation of Collembola communities and reproductive mode across forest types and regions. Ecol. Evol. 7, 4390–4403 (2017).

  • 57.

    Cox, F. Nitrogen availability is a primary determinant of confer mycorrhizas across complex environmental gradients. Ecol. Lett. 13, 1103–1113 (2010).

    • Article
    • Google Scholar
  • 58.

    Wang, Q. et al. Effects of nitrogen and phosphorous inputs on soil bacterial abundance, diversity, and community composition in Chinese Fir plantations. Front. Microbiol. 9, 1543, https://doi.org/10.3389/fmicb.2018.01543 (2018).

  • 59.

    Smykla, J. et al. Geochemical and biotic factors influencing diversity and distribution patterns of soil microfauna across ice-free coastal habitats in Victoria Land, Antarctica. Soil Biol. Biochem. 116, 265–276 (2018).

  • 60.

    Culliney, T. W. Role of arthropods in maintaining soil fertility. Agriculture 3, 629–659 (2013).

    • Article
    • Google Scholar
  • 61.

    Krauss, J. & Funke, W. Extraordinary high density of Protura in a windfall area of young spruce plants. Pedobiologia 43, 44–46 (1999).

    • Google Scholar
  • 62.

    Malmström, A. & Persson, T. Responses of Collembola and Protura to tree girdling – some support for ectomycorrhizal feeding. Soil Org. 83, 279–285 (2011).

    • Google Scholar
  • 63.

    Kubiak, K., Żółciak, A., Damszel, M., Lech, P. & Sierota, Z. Armillaria Pathogens under climate change. Forests 8, 100, https://doi.org/10.3390/f804010 (2017).

    • Article
    • Google Scholar
  • 64.

    Matějka, K. Investigation of vegetation in catchments of Plešné and Čertovo Lakes (Bohemian Forest, Czech Republic) to 2016. www.infodatasys.cz/proj002/results2016.pdf (2016).


  • Source: Ecology - nature.com

    The effect of phylogeographic history on species boundaries: a comparative framework in Hyla tree frogs

    The bits of wire that can devastate lion populations