in

Fish body sizes change with temperature but not all species shrink with warming

  • 1.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    • Article
    • Google Scholar
  • 2.

    Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends Ecol. Evol. 32, 174–186 (2017).

    • Article
    • Google Scholar
  • 3.

    Fisher, J. A., Frank, K. T. & Leggett, W. C. Breaking Bergmann’s rule: truncation of Northwest Atlantic marine fish body sizes. Ecology 91, 2499–2505 (2010).

    • Article
    • Google Scholar
  • 4.

    Shackell, N. L., Frank, K. T., Fisher, J. A., Petrie, B. & Leggett, W. C. Decline in top predator body size and changing climate alter trophic structure in an oceanic ecosystem. Proc. R. Soc. Lond. B 277, 1353–1360 (2009).

    • Article
    • Google Scholar
  • 5.

    Rouyer, T., Sadykov, A., Ohlberger, J. & Stenseth, N. C. Does increasing mortality change the response of fish populations to environmental fluctuations? Ecol. Lett. 15, 658–665 (2012).

  • 6.

    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).

    • Article
    • Google Scholar
  • 7.

    Cheung, W. W. et al. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat. Clim. Change 3, 254–258 (2013).

    • Article
    • Google Scholar
  • 8.

    Pauly, D. & Cheung, W. W. L. Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Glob. Change Biol. 24, e15–e26 (2018).

    • Article
    • Google Scholar
  • 9.

    Lefevre, S., McKenzie, D. J. & Nilsson, G. E. In modelling effects of global warming, invalid assumptions lead to unrealistic projections. Glob. Change Biol. 24, 553–556 (2018).

    • Article
    • Google Scholar
  • 10.

    Morrongiello, J. R., Sweetman, P. C. & Thresher, R. E. Fishing constrains phenotypic responses of marine fish to climate variability. J. Anim. Ecol. 88, 1645–1656 (2019).

    • Article
    • Google Scholar
  • 11.

    Angilletta, M. J. Jr, Steury, T. D. & Sears, M. W. Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr. Comp. Biol. 44, 498–509 (2004).

    • Article
    • Google Scholar
  • 12.

    Bergman, C. Uber die Verhaltnisse der Warmeokonomie der Thiere zu ihrer Grosse. Gottinger Stud. 3, 595–708 (1847).

    • Google Scholar
  • 13.

    Audzijonyte, A. et al. Is oxygen limitation in warming waters a valid mechanism to explain decreased body sizes in aquatic ectotherms? Glob. Ecol. Biogeogr. 28, 64–77 (2019).

    • Article
    • Google Scholar
  • 14.

    Forster, J., Hirst, A. G. & Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl Acad. Sci. USA 109, 19310–19314 (2012).

  • 15.

    Lefevre, S., McKenzie, D. J. & Nilsson, G. E. Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms. Glob. Change Biol. 23, 3449–3459 (2017).

    • Article
    • Google Scholar
  • 16.

    Pauly, D. The relationships between gill surface area and growth performance in fish: a generalization of von Bertalanffy’s theory of growth. Meeresforschung 28, 251–282 (1981).

    • Google Scholar
  • 17.

    Donelson, J. M., Munday, P. L., McCormick, M. I. & Pitcher, C. R. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat. Clim. Change 2, 30–32 (2011).

    • Article
    • Google Scholar
  • 18.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    • Article
    • Google Scholar
  • 19.

    Edgar, G. J. & Barrett, N. S. An assessment of population responses of common inshore fishes and invertebrates following declaration of five Australian marine protected areas. Environ. Conserv. 39, 271–281 (2012).

    • Article
    • Google Scholar
  • 20.

    Edgar, G. J. & Stuart-Smith, R. D. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci. Data 1, 140007 (2014).

    • Article
    • Google Scholar
  • 21.

    Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).

  • 22.

    Edgar, G. J., Barrett, N. S. & Morton, A. J. Biases associated with the use of underwater visual census techniques to quantify the density and size-structure of fish populations. J. Exp. Mar. Biol. Ecol. 308, 269–290 (2004).

    • Article
    • Google Scholar
  • 23.

    Waldock, C., Stuart‐Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).

    • Article
    • Google Scholar
  • 24.

    Bennett, S., Wernberg, T., Joy, B. A., De Bettignies, T. & Campbell, A. H. Central and rear-edge populations can be equally vulnerable to warming. Nat. Commun. 6, 10280 (2015).

  • 25.

    Conover, D. O., Duffy, T. A. & Hice, L. A. The covariance between genetic and environmental influences across ecological gradients: reassessing the evolutionary significance of countergradient and cogradient variation. Ann. N. Y. Acad. Sci. 1168, 100–129 (2009).

    • Article
    • Google Scholar
  • 26.

    Audzijonyte, A., Kuparinen, A. & Fulton, E. A. How fast is fisheries‐induced evolution? Quantitative analysis of modelling and empirical studies. Evol. Appl. 6, 585–595 (2013).

    • Article
    • Google Scholar
  • 27.

    Audzijonyte, A. et al. Trends and management implications of human‐influenced life‐history changes in marine ectotherms. Fish Fish. 17, 1005–1028 (2016).

    • Article
    • Google Scholar
  • 28.

    Fritschie, K. J. & Olden, J. D. Disentangling the influences of mean body size and size structure on ecosystem functioning: an example of nutrient recycling by a non‐native crayfish. Ecol. Evol. 6, 159–169 (2016).

    • Article
    • Google Scholar
  • 29.

    AudzijonyteA., KuparinenA., GortonR. & FultonE. A . Ecological consequences of body size decline in harvested fish species: positive feedback loops in trophic interactions amplify human impact. Biol. Lett. 9, 20121103 (2013).

    • Article
    • Google Scholar
  • 30.

    Jørgensen, C. & Fiksen, Ø. Modelling fishing-induced adaptations and consequences for natural mortality. Can. J. Fish. Aquat. Sci. 67, 1086–1097 (2010).

    • Article
    • Google Scholar
  • 31.

    Edgar, G. J. & Stuart-Smith, R. D. Ecological effects of marine protected areas on rocky reef communities—a continental-scale analysis. Mar. Ecol. Prog. Ser. 388, 51–62 (2009).

    • Article
    • Google Scholar
  • 32.

    Reynolds, R. & Banzon, V. NOAA Optimum Interpolation 1/4 Degree Daily Sea Surface Temperature (OISST) Analysis, Version 2 (NOAA National Centers for Environmental Information, 2008); https://go.nature.com/2WtURVO

  • 33.

    Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846 (2017).

    • Article
    • Google Scholar
  • 34.

    Stan Development Team RStan: the R interface to Stan. R package version 2.19.2 http://mc-stan.org/ (2019).


  • Source: Ecology - nature.com

    3 Questions: Greg Britten on how marine life can recover by 2050

    The river–groundwater interface as a hotspot for arsenic release