in

Harmonized global maps of above and belowground biomass carbon density in the year 2010

  • 1.

    Houghton, R. A., Hall, F. & Goetz, S. J. Importance of biomass in the global carbon cycle. J. Geophys. Res. Biogeosciences 114 (2009).

  • 2.

    Huntzinger, D. N. et al. The North American Carbon Program Multi-Scale Synthesis and Terrestrial Model Intercomparison Project – Part 1: Overview and experimental design. Geosci. Model Dev 6, 2121–2133 (2013).

  • 3.

    Schwalm, C. R. et al. Toward “optimal” integration of terrestrial biosphere models. Geophys. Res. Lett. 42, 4418–4428 (2015).

  • 4.

    Li, W. et al. Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations. Biogeosciences 14, 5053–5067 (2017).

    • Article
    • Google Scholar
  • 5.

    Spawn, S. A., Lark, T. J. & Gibbs, H. K. Carbon emissions from cropland expansion in the United States. Environ. Res. Lett. 14, 045009 (2019).

  • 6.

    Harris, N. L. et al. Baseline Map of Carbon Emissions from Deforestation in Tropical Regions. Science 336, 1573–1576 (2012).

  • 7.

    Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).

  • 8.

    Strassburg, B. B. N. et al. Global congruence of carbon storage and biodiversity in terrestrial ecosystems. Conserv. Lett 3, 98–105 (2010).

    • Article
    • Google Scholar
  • 9.

    West, P. C. et al. Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl. Acad. Sci. 107, 19645–19648 (2010).

  • 10.

    Carvalhais, N. et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514, 213–217 (2014).

  • 11.

    Brandão, A. et al. Estimating the Potential for Conservation and Farming in the Amazon and Cerrado under Four Policy Scenarios. Sustainability 12, 1277 (2020).

    • Article
    • Google Scholar
  • 12.

    Gibbs, H. K., Brown, S., Niles, J. O. & Foley, J. A. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ. Res. Lett. 2, 045023 (2007).

  • 13.

    Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).

  • 14.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. 114, 11645–11650 (2017).

  • 15.

    Goetz, S. J. et al. Mapping and monitoring carbon stocks with satellite observations: a comparison of methods. Carbon Balance Manag 4, 2 (2009).

  • 16.

    Xiao, J. et al. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 233, 111383 (2019).

  • 17.

    Zomer, R. J. et al. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets. Sci. Rep 6, 29987 (2016).

  • 18.

    Berner, L. T., Jantz, P., Tape, K. D. & Goetz, S. J. Tundra plant above-ground biomass and shrub dominance mapped across the North Slope of Alaska. Environ. Res. Lett. 13, 035002 (2018).

  • 19.

    Xia, J. et al. Spatio-Temporal Patterns and Climate Variables Controlling of Biomass Carbon Stock of Global Grassland Ecosystems from 1982 to 2006. Remote Sens 6, 1783–1802 (2014).

  • 20.

    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).

  • 21.

    Wolf, J. et al. Biogenic carbon fluxes from global agricultural production and consumption. Glob. Biogeochem. Cycles 29, 1617–1639 (2015).

  • 22.

    Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root: shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006).

  • 23.

    IPCC 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. vol. 4 (IPCC National Greenhouse Gas Inventories Programme, 2006).

  • 24.

    IPCC 2019. 2019 Refinement to the 2006 IPCC Guidlines for National Greenhouse Gas Inventories. vol. 4 (IPCC National Greenhouse Gas Inventories Programme, 2019).

  • 25.

    Reich, P. B. et al. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proc. Natl. Acad. Sci. 111, 13721–13726 (2014).

  • 26.

    Wang, P. et al. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature. Environ. Res. Lett. 11, 055003 (2016).

  • 27.

    Russell, M. B., Domke, G. M., Woodall, C. W. & D’Amato, A. W. Comparisons of allometric and climate-derived estimates of tree coarse root carbon stocks in forests of the United States. Carbon Balance Manag 10, 20 (2015).

  • 28.

    Ruesch, A. & Gibbs, H. New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, http://cdiac.ess-dive.lbl.gov (2008).

  • 29.

    Schimel, D. et al. Observing terrestrial ecosystems and the carbon cycle from space. Glob. Change Biol. 21, 1762–1776 (2015).

  • 30.

    Santoro, M. et al. GlobBiomass – global datasets of forest biomass. PANGAEA https://doi.org/10.1594/PANGAEA.894711 (2018).

  • 31.

    Huang, W. et al. High-Resolution Mapping of Aboveground Biomass for Forest Carbon Monitoring System in the 3 Tri-State Region of Maryland, Pennsylvania and Delaware, USA. Environ. Res. Lett. 14, 095002 (2019).

  • 32.

    Food and Agricultural Organization. FRA 2015 Terms and Definitions. (Food and Agricultural Organization of the United Nations, 2012).

  • 33.

    Quegan, S. et al. DUE GlobBiomass: D6 – Global Biomass Map Algorithm Theoretical Basis Document. GlobBiomass, http://globbiomass.org/wp-content/uploads/DOC/Deliverables/D6_D7/GlobBiomass_D6_7_Global_ATBD_v2.pdf (2017).

  • 34.

    Hansen, M. C. et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 342, 850–853 (2013).

  • 35.

    Bouvet, A. et al. An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sens. Environ. 206, 156–173 (2018).

  • 36.

    Le Toan, T., Beaudoin, A., Riom, J. & Guyon, D. Relating forest biomass to SAR data. IEEE Trans. Geosci. Remote Sens 30, 403–411 (1992).

  • 37.

    European Space Agency. 300 m Annual global land cover time series from 1992 to 2015. European Space Agency – Climate Change Initiative, http://maps.elie.ucl.ac.be/CCI/viewer/download.php (2017).

  • 38.

    Bartholomé, E. & Belward, A. S. GLC2000: a new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 26, 1959–1977 (2005).

  • 39.

    Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406–1420 (2016).

  • 40.

    Englund, O. et al. A new high-resolution nationwide aboveground carbon map for Brazil. Geo Geogr. Environ. 4, e00045 (2017).

    • Article
    • Google Scholar
  • 41.

    Scholze, M., Buchwitz, M., Dorigo, W., Guanter, L. & Quegan, S. Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems. Biogeosciences 14, 3401–3429 (2017).

  • 42.

    Martin, A. R., Doraisami, M. & Thomas, S. C. Global patterns in wood carbon concentration across the world’s trees and forests. Nat. Geosci. 11, 915 (2018).

  • 43.

    Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).

    • Article
    • Google Scholar
  • 44.

    Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).

  • 45.

    Berner, L. T., Jantz, P., Tape, K. D. & Goetz, S. J. ABoVE: Gridded 30-m Aboveground Biomass, Shrub Dominance, North Slope, AK, 2007–2016. Oak Ridge National Laboratory Distributed Active Archive Center https://doi.org/10.3334/ORNLDAAC/1565 (2018).

  • 46.

    Vermote, E. F. & Wolfe, R. MYD09GQ MODIS/Aqua Surface Reflectance Daily L2G Global 250 m SIN Grid V006. NASA EOSDIS Land Processes Distributed Active Archive Center, https://doi.org/10.5067/MODIS/MYD09GQ.006 (2015).

  • 47.

    Vermote, E. F. & Wolfe, R. MOD09GQ MODIS/Terra Surface Reflectance Daily L2G Global 250 m SIN Grid V006. NASA EOSDIS Land Processes Distributed Active Archive Center, https://doi.org/10.5067/MODIS/MOD09GQ.006 (2015).

  • 48.

    Steven, M. D., Malthus, T. J., Baret, F., Xu, H. & Chopping, M. J. Intercalibration of vegetation indices from different sensor systems. Remote Sens. Environ. 88, 412–422 (2003).

  • 49.

    Adler, P. B. et al. Productivity Is a Poor Predictor of Plant Species Richness. Science 333, 1750–1753 (2011).

  • 50.

    Didan, K. MYD13Q1 MODIS/Aqua Vegetation Indices 16-Day L3 Global 250 m SIN Grid V006. NASA EOSDIS Land Processes Distributed Active Archive Center, https://doi.org/10.5067/MODIS/MYD13Q1.006 (2015).

  • 51.

    Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid V006. NASA EOSDIS Land Processes Distributed Active Archive Center https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).

  • 52.

    Fensholt, R. & Proud, S. R. Evaluation of Earth Observation based global long term vegetation trends — Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 119, 131–147 (2012).

  • 53.

    Li, Z. et al. Comparing cropland net primary production estimates from inventory, a satellite-based model, and a process-based model in the Midwest of the United States. Ecol. Model. 277, 1–12 (2014).

    • Article
    • Google Scholar
  • 54.

    Turner, D. P. et al. Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens. Environ. 102, 282–292 (2006).

  • 55.

    Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, GB1003 (2008).

  • 56.

    Grassini, P., Eskridge, K. M. & Cassman, K. G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 4, 2918 (2013).

  • 57.

    Gray, J. M. et al. Direct human influence on atmospheric CO2 seasonality from increased cropland productivity. Nature 515, 398–401 (2014).

  • 58.

    Running, S. W., Mu, Q. & Zhao, M. MOD17A3H MODIS/Terra Net Primary Production Yearly L4 Global 1 km SIN Grid V055. NASA EOSDIS Land Processes Distributed Active Archive Center, https://lpdaac.usgs.gov/products/mod17a3v055/ (2015).

  • 59.

    Fick, S. & Hijmans, R. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    • Article
    • Google Scholar
  • 60.

    Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).

  • 61.

    Harris, N. L., Goldman, E. D. & Gibbes, S. Spatial Database of Planted Trees (SDPT Version 1.0). World Resources Institute, https://www.wri.org/publication/planted-trees (2019).

  • 62.

    Food and Agricultural Organization. Global Forest Resources Assessment 2015: Desk Reference. (Food and Agricultural Organization of the United Nations, 2015).

  • 63.

    Dimiceli, C. et al. MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250 m SIN Grid V006. NASA EOSDIS Land Processes Distributed Active Archive Center, https://doi.org/10.5067/MODIS/MOD44B.006 (2015).

  • 64.

    Sexton, J. O. et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digit. Earth 6, 427–448 (2013).

  • 65.

    Dinerstein, E. et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. BioScience 67, 534–545 (2017).

  • 66.

    Spawn, S. A. & Gibbs, H. K. Global Aboveground and Belowground Biomass Carbon Density Maps for the Year 2010. Oak Ridge National Laboratory Distributed Active Archive Center, https://doi.org/10.3334/ORNLDAAC/1763 (2019).

  • 67.

    Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. figshare https://doi.org/10.6084/m9.figshare.c.4561940 (2020).

  • 68.

    Gao, Q. et al. Climatic change controls productivity variation in global grasslands. Sci. Rep 6, 26958 (2016).

  • 69.

    de Jong, R., Verbesselt, J., Schaepman, M. E. & de Bruin, S. Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Glob. Change Biol 18, 642–655 (2012).

  • 70.

    Gonsamo, A., Chen, J. M. & Lombardozzi, D. Global vegetation productivity response to climatic oscillations during the satellite era. Glob. Change Biol. 22, 3414–3426 (2016).

  • 71.

    Ray, D. K. et al. Climate change has likely already affected global food production. Plos One 14, e0217148 (2019).

  • 72.

    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate Trends and Global Crop Production Since 1980. Science 333, 616–620 (2011).

  • 73.

    Hu, T. et al. Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data. Remote Sens 8, 565 (2016).

  • 74.

    Iversen, C. M. et al. The unseen iceberg: plant roots in arctic tundra. New Phytol. 205, 34–58 (2015).

    • Article
    • Google Scholar
  • 75.

    USDA Forest Service. Forest Inventory and Analysis National Program: Standard Tables of Forest Caron Stock Estimates by State. Forest Inventory and Analysis National Program, https://www.fia.fs.fed.us/forestcarbon/index.php (2014).

  • 76.

    Langner, A., Achard, F. & Grassi, G. Can recent pan-tropical biomass maps be used to derive alternative Tier 1 values for reporting REDD + activities under UNFCCC? Environ. Res. Lett. 9, 124008 (2014).

  • 77.

    Jobbágy, E. G. & Jackson, R. B. The Vertical Distribution of Soil Organic Carbon and Its Relation to Climate and Vegetation. Ecol. Appl. 10, 423–436 (2000).

    • Article
    • Google Scholar
  • 78.

    Scharlemann, J. P., Tanner, E. V., Hiederer, R. & Kapos, V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag 5, 81–91 (2014).

  • 79.

    Domke, G. M., Woodall, C. W., Walters, B. F. & Smith, J. E. From Models to Measurements: Comparing Downed Dead Wood Carbon Stock Estimates in the U.S. Forest Inventory. Plos One 8, e59949 (2013).

  • 80.

    R Core Team. R: A Language and Environment for Statistical Computing, https://www.R-project.org/ (2017).

  • 81.

    Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

  • 82.

    Spawn, S. A. sethspawn/globalBiomassC. Zenodo https://doi.org/10.5281/zenodo.3647567 (2020).

  • 83.

    Olson, D. M. et al. Terrestrial Ecoregions of the World: A New Map of Life on EarthA new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).

  • 84.

    European Space Agency. Land Cover CCI Product User Guide Version 2, D3.4-PUG, v2.5. European Space Agency – Climate Change Initiative, http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-PUG-v2.5.pdf (2016).

  • 85.

    Friedl, M. A. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra + Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V006. NASA EOSDIS Land Processes Distributed Active Archive Center, https://doi.org/10.5067/MODIS/MCD12Q1.006 (2019).

  • 86.

    Jing, Q., Bélanger, G., Baron, V. & Bonesmo, H. Modeling the Biomass and Harvest Index Dynamics of Timothy. Agron. J. 103, 1397–1404 (2011).

    • Article
    • Google Scholar
  • 87.

    West, T. O. et al. Cropland carbon fluxes in the United States: increasing geospatial resolution of inventory-based carbon accounting. Ecol. Appl. 20, 1074–1086 (2010).

    • Article
    • Google Scholar
  • 88.

    Unkovich, M., Baldock, J. & Forbes, M. Variability in harvest index of grain crops and potential significance for carbon accounting: examples from Australian agriculture. Adv. Agron 105, 173–219 (2010).

    • Article
    • Google Scholar
  • 89.

    Hay, R. K. M. Harvest index: a review of its use in plant breeding and crop physiology. Ann. Appl. Biol. 126, 197–216 (1995).

    • Article
    • Google Scholar
  • 90.

    Larcher, W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups. (Springer-Verlag, 2003).

  • 91.

    Hakala, K., Keskitalo, M. & Eriksson, C. Nutrient uptake and biomass accumulation for eleven different field crops. Agric. Food Sci 18, 366–387 (2009).

  • 92.

    Bolinder, M. A., Janzen, H. H., Gregorich, E. G., Angers, D. A. & VandenBygaart, A. J. An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agric. Ecosyst. Environ 118, 29–42 (2007).

    • Article
    • Google Scholar
  • 93.

    Mackenzie, B. A. & Van Fossen, L. Managing Dry Grain In Storage. In Agricultural Engineers’ Digest vol. 20 (Purdue University Cooperative Extension Service, 1995).

  • 94.

    Goodwin, M. Crop Profile for Dry Bean in Canada. Agriculture and Agri-Food Canada, http://publications.gc.ca/collections/collection_2009/agr/A118-10-4-2005E.pdf (2005).

  • 95.

    Schulte auf’m Erley, G., Kaul, H.-P., Kruse, M. & Aufhammer, W. Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization. Eur. J. Agron. 22, 95–100 (2005).

  • 96.

    Bjorkman, T. Northeast Buckwheat Growers Newsletter No. 19. Cornell University NYSAES, http://www.hort.cornell.edu/bjorkman/lab/buck/NL/june05.php (2005).

  • 97.

    Kyle, G. P. et al. GCAM 3.0 Agriculture and Land Use: Data Sources and Methods, https://doi.org/10.2172/1036082 (2011).

  • 98.

    Bastin, S. & Henken, K. Water Content of Fruits and Vegetables. University of Kentucky Cooperative Extension Service, https://www.academia.edu/5729963/Water_Content_of_Fruits_and_Vegetables (1997).

  • 99.

    Smil, V. Crop Residues: Agriculture’s Largest HarvestCrop residues incorporate more than half of the world’s agricultural phytomass. BioScience 49, 299–308 (1999).

    • Article
    • Google Scholar
  • 100.

    Squire, G. R. The physiology of tropical crop production. (C.A.B. International, 1990).

  • 101.

    Williams, J. R. et al. EPIC users guide v. 0509. Texas A & M University Blackland Research and Extension Center, http://epicapex.tamu.edu/files/2013/02/epic0509usermanualupdated.pdf (2006).

  • 102.

    Okeke, J. E. Cassava varietal improvement for processing and utilization in livestock feeds. In Cassava as Livestock Feed in Africa (International Institute of Tropical Agriculture, 1992).

  • 103.

    Pongsawatmanit, R., Thanasukarn, P. & Ikeda, S. Effect of Sucrose on RVA Viscosity Parameters, Water Activity and Freezable Water Fraction of Cassava Starch Suspensions. ScienceAsia 28, 129–134 (2002).

  • 104.

    Gigou, J. et al. Fonio Millet (Digitaria Exilis) Response to N, P and K Fertilizers Under Varying Climatic Conditions in West. AFRICA. Exp. Agric 45, 401–415 (2009).

    • Article
    • Google Scholar
  • 105.

    Food and Agricultural Organization. FAOSTAT 2001: FAO statistical databasees. FAOSTAT, http://www.fao.org/faostat/en/#data (2006).

  • 106.

    Bolinder, M. A., Angers, D. A., Bélanger, G., Michaud, R. & Laverdière, M. R. Root biomass and shoot to root ratios of perennial forage crops in eastern Canada. Can. J. Plant Sci. 82, 731–737 (2002).

    • Article
    • Google Scholar
  • 107.

    Deferne, J. & Pate, D. W. Hemp seed oil: A source of valuable essential fatty acids. J. Int. Hemp Assoc 3, 4–7 (1996).

    • Google Scholar
  • 108.

    Islam, Md. R. et al. Study of Harvest Index and Genetic Variability in White Jute (Corchorus capsularis) Germplasm. J. Biol. Sci. 2, 358–360 (2002).

    • Article
    • Google Scholar
  • 109.

    Ahad, A. & Debnath, C. N. Shoot Root Ratio of Jute Varieties and the Nature of Association Between Root Characteristics and the Yield of Dry Matter and Fiber. Bangladesh J. Agric. Res 13, 17–22 (1988).

    • Google Scholar
  • 110.

    Mondal, S. S., Ghosh, A. & Debabrata, A. Effect of seeding time of linseed (Linum usitatissimum) in rice (Oryza sativa)-based paira cropping system under rainfed lowland condition. Indian J. Agric. Sci 75, 134–137 (2005).

    • Google Scholar
  • 111.

    Ayaz, S., Moot, D. J., Mckenzie, B. A., Hill, G. D. & Mcneil, D. L. The Use of a Principal Axis Model to Examine Individual Plant Harvest Index in Four Grain Legumes. Ann. Bot. 94, 385–392 (2004).

  • 112.

    Goudriaan, J. & Van Laar, H. H. Development and growth. In Modelling Potential Crop Growth Processes: Textbook with Exercises (eds. Goudriaan, J. & Van Laar, H. H.) 69–94 (Springer Netherlands, 1994).

  • 113.

    National Research Council. Nutrient Requirements of Nonhuman Primates: Second Revised Edition. (The National Academies Press, 2003).

  • 114.

    Roth, C. M., Shroyer, J. P. & Paulsen, G. M. Allelopathy of Sorghum on Wheat under Several Tillage Systems. Agron. J. 92, 855–860 (2000).

    • Article
    • Google Scholar
  • 115.

    Heidari Zooleh, H. et al. Effect of alternate irrigation on root-divided Foxtail Millet (Setaria italica). Aust. J. Crop Sci 5, 205–2013 (2011).

    • Google Scholar
  • 116.

    Brück, H., Sattelmacher, B. & Payne, W. A. Varietal differences in shoot and rooting parameters of pearl millet on sandy soils in Niger. Plant Soil 251, 175–185 (2003).

    • Article
    • Google Scholar
  • 117.

    Oelke, E. A., Putnam, D. H., Teynor, T. M. & Oplinger, E. S. Quinoa. In Alternative Field Crops Manual (University of Wisconsin-Extension, Cooperative Extension, 1992).

  • 118.

    Robertson, M. J., Silim, S., Chauhan, Y. S. & Ranganathan, R. Predicting growth and development of pigeonpea: biomass accumulation and partitioning. Field Crops Res 70, 89–100 (2001).

    • Article
    • Google Scholar
  • 119.

    Armstrong, E. Desiccation & harvest of field peas. In Pulse management in Southern New South Wales (State of New South Wales Agriculture, 1999).

  • 120.

    Fischer, R. A. (Tony) & Edmeades, G. O. Breeding and Cereal Yield Progress. Crop Sci. 50, S-85–S-98 (2010).

    • Article
    • Google Scholar
  • 121.

    Atlin, G. N. et al. Developing rice cultivars for high-fertility upland systems in the Asian tropics. Field Crops Res 97, 43–52 (2006).

    • Article
    • Google Scholar
  • 122.

    Bueno, C. S. & Lafarge, T. Higher crop performance of rice hybrids than of elite inbreds in the tropics: 1. Hybrids accumulate more biomass during each phenological phase. Field Crops Res 112, 229–237 (2009).

    • Article
    • Google Scholar
  • 123.

    Yang, J. & Zhang, J. Crop management techniques to enhance harvest index in rice. J. Exp. Bot 61, 3177–3189 (2010).

  • 124.

    Ziska, L. H., Namuco, O., Moya, T. & Quilang, J. Growth and Yield Response of Field-Grown Tropical Rice to Increasing Carbon Dioxide and Air Temperature. Agron. J. 89, 45–53 (1997).

    • Article
    • Google Scholar
  • 125.

    Mwaja, V. N., Masiunas, J. B. & Weston, L. A. Effects of fertility on biomass, phytotoxicity, and allelochemical content of cereal rye. J. Chem. Ecol. 21, 81–96 (1995).

  • 126.

    Bruinsma, J. & Schuurman, J. J. The effect of spraying with DNOC (4,6-dinitro-o-cresol) on the growth of the roots and shoots of winter rye plants. Plant Soil 24, 309–316 (1966).

  • 127.

    Yau, S. K., Sidahmed, M. & Haidar, M. Conservation versus Conventional Tillage on Performance of Three Different Crops. Agron. J. 102, 269–276 (2010).

    • Article
    • Google Scholar
  • 128.

    Hojati, M., Modarres-Sanavy, S. A. M., Karimi, M. & Ghanati, F. Responses of growth and antioxidant systems in Carthamustinctorius L. under water deficit stress. Acta Physiol. Plant. 33, 105–112 (2011).

    • Article
    • Google Scholar
  • 129.

    Oelke, E. A. et al. Safflower. In Alternative Field Crops Manual (University of Wisconsin-Extension, Cooperative Extension, 1992).

  • 130.

    Perez, R. Chapter 3: Sugar cane. In Feeding pigs in the tropics (Food and Agricultural Organization of the United Nations, 1997).

  • 131.

    Van Dillewijn, C. Botany of Sugarcane. (Chronica Botanica Co, 1952).

  • 132.

    Pate, F. M., Alvarez, J., Phillips, J. D. & Eiland, B. R. Sugarcane as a Cattle Feed: Production and Utilization. (University of Florida Extension Institute of Food and Agricultural Sciences, 2002).


  • Source: Ecology - nature.com

    3 Questions: Greg Britten on how marine life can recover by 2050

    The river–groundwater interface as a hotspot for arsenic release