in

Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal

  • 1.

    Audrain, B., Farag, M. A., Ryu, C. M. & Ghigo, J. M. Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol. Rev. 39, 222–233 (2015).

  • 2.

    Tyc, O., Song, C., Dickschat, J. S., Vos, M. & Garbeva, P. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol. 25, 280–292 (2017).

  • 3.

    Cane, D. E. & Ikeda, H. Exploration and mining of the bacterial terpenome. Acc. Chem. Res. 45, 463–472 (2012).

  • 4.

    Jiang, J., He, X. & Cane, D. E. Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzyme. Nat. Chem. Biol. 3, 711–715 (2007).

  • 5.

    Liato, V. & Aider, M. Geosmin as a source of the earthy-musty smell in fruits, vegetables and water: origins, impact on foods and water, and review of the removing techniques. Chemosphere 181, 9–18 (2017).

  • 6.

    Stensmyr, M. C. et al. A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151, 1345–1357 (2012).

  • 7.

    Rabe, P., Citron, C. A. & Dickschat, J. S. Volatile terpenes from actinomycetes: a biosynthetic study correlating chemical analyses to genome data. ChemBioChem 14, 2345–2354 (2013).

  • 8.

    Yamada, Y. et al. Terpene synthases are widely distributed in bacteria. Proc. Natl Acad. Sci. USA 112, 857–862 (2015).

  • 9.

    Gerber, N. N. & Lechevalier, H. A. Geosmin, an earthly-smelling substance isolated from actinomycetes. Appl. Microbiol. 13, 935–938 (1965).

  • 10.

    Barka, E. A. et al. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev. 80, 1–43 (2016).

    • Article
    • Google Scholar
  • 11.

    Jones, S. E. et al. Streptomyces exploration is triggered by fungal interactions and volatile signals. eLife 6, e21738 (2017).

  • 12.

    Bush, M. J., Tschowri, N., Schlimpert, S., Flärdh, K. & Buttner, M. J. c-di-GMP signalling and the regulation of developmental transitions in streptomycetes. Nat. Rev. Microbiol. 13, 749–760 (2015).

  • 13.

    Becher, P. G., Bengtsson, M., Hansson, B. S. & Witzgall, P. Flying the fly: long-range flight behavior of Drosophila melanogaster to attractive odors. J. Chem. Ecol. 36, 599–607 (2010).

  • 14.

    Melo, N. et al. Geosmin attracts Aedes aegypti mosquitoes to oviposition sites. Curr. Biol. 30, 127–134 (2020).

  • 15.

    Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).

  • 16.

    Bengtsson, G., Erlandsson, A. & Rundgren, S. Fungal odour attracts soil collembola. Soil Biol. Biochem. 20, 25–30 (1988).

    • Article
    • Google Scholar
  • 17.

    Thimm, T., Hoffmann, A., Borkott, H., Munch, J. C. & Tebbe, C. C. The gut of the soil microarthropod Folsomia candida (Collembola) is a frequently changeable but selective habitat and a vector for microorganisms. Appl. Environ. Microbiol. 64, 2660–2669 (1998).

  • 18.

    Kaur, T., Vasudev, A., Sohal, S. K. & Manhas, R. K. Insecticidal and growth inhibitory potential of Streptomyces hydrogenans DH16 on major pest of India, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). BMC Microbiol. 14, 227 (2014).

  • 19.

    Tran, A. et al. C. elegans avoids toxin-producing Streptomyces using a seven transmembrane domain chemosensory receptor. eLife 6, e23770 (2017).

  • 20.

    Al-Bassam, M. M., Bibb, M. J., Bush, M. J., Chandra, G. & Buttner, M. J. Response regulator heterodimer formation controls a key stage in Streptomyces development. PLoS Genet. 10, e1004554 (2014).

  • 21.

    Saito, N., Matsubara, K., Watanabe, M., Kato, F. & Ochi, K. Genetic and biochemical characterization of EshA, a protein that forms large multimers and affects developmental processes in Streptomyces griseus. J. Biol. Chem. 278, 5902–5911 (2003).

  • 22.

    Persson, J., Chater, K. F. & Flärdh, K. Molecular and cytological analysis of the expression of Streptomyces sporulation regulatory gene whiH. FEMS Microbiol. Lett. 341, 96–105 (2013).

  • 23.

    Ryding, N. J. et al. A developmentally regulated gene encoding a repressor-like protein is essential for sporulation in Streptomyces coelicolor A3(2). Mol. Microbiol. 29, 343–357 (1998).

  • 24.

    Gallagher, K. A. et al. c-di-GMP arms an anti-sigma to control progression of multicellular differentiation in Streptomyces. Mol. Cell 77, 586–599 (2019).

  • 25.

    Bentley, R. & Meganathan, R. Geosmin and methylisoborneol biosynthesis in streptomycetes. Evidence for an isoprenoid pathway and its absence in non-differentiating isolates. FEBS Lett. 125, 220–222 (1981).

  • 26.

    Schöller, C. E., Gurtler, H., Pedersen, R., Molin, S. & Wilkins, K. Volatile metabolites from actinomycetes. J. Agric. Food Chem. 50, 2615–2621 (2002).

  • 27.

    Ghiradella, H. & Radigan, W. Collembolan cuticle: wax layer and anti-wetting properties. J. Insect Physiol. 20, 301–306 (1974).

  • 28.

    Helbig, R., Nickerl, J., Neinhuis, C. & Werner, C. Smart skin patterns protect springtails. PLoS ONE 6, e25105 (2011).

  • 29.

    Ruddick, S. M. & Williams, S. T. Studies on the ecology of actinomycetes in soil. V. Some factors influencing the dispersal and adsorption of spores in soil. Soil Biol. Biochem. 4, 93–103 (1972).

    • Article
    • Google Scholar
  • 30.

    Jørgensen, H. B., Elmholt, S. & Petersen, H. Collembolan dietary specialisation on soil grown fungi. Biol. Fertil. Soils 39, 9–15 (2003).

    • Article
    • Google Scholar
  • 31.

    Staaden, S., Milcu, A., Rohlfs, M. & Scheu, S. Olfactory cues associated with fungal grazing intensity and secondary metabolite pathway modulate Collembola foraging behaviour. Soil Biol. Biochem. 43, 1411–1416 (2011).

  • 32.

    Faddeeva-Vakhrusheva, A. et al. Gene family evolution reflects adaptation to soil environmental stressors in the genome of the collembolan Orchesella cincta. Genome Biol. Evol. 8, 2106–2117 (2016).

  • 33.

    Faddeeva-Vakhrusheva, A. et al. Coping with living in the soil: the genome of the parthenogenetic springtail Folsomia candida. BMC Genom. 18, 493 (2017).

  • 34.

    Böllmann, J., Elmer, M., Wöllecke, J., Raidl, S. & Hüttl, R. F. Defensive strategies of soil fungi to prevent grazing by Folsomia candida (Collembola). Pedobiologia 53, 107–114 (2010).

    • Article
    • Google Scholar
  • 35.

    Rohlfs, M. & Churchill, A. C. L. Fungal secondary metabolites as modulators of interactions with insects and other arthropods. Fungal Genet. Biol. 48, 23–34 (2011).

  • 36.

    Höckelmann, C., Becher, P. G., Von Reuß, S. H. & Jüttner, F. Sesquiterpenes of the geosmin-producing cyanobacterium Calothrix PCC 7507 and their toxicity to invertebrates. Z. Naturforsch. C 64, 49–55 (2009).

    • Article
    • Google Scholar
  • 37.

    Booth, R. G. & Anderson, J. M. The influence of fungal food quality on the growth and fecundity of Folsomia candida (Collembola: Isotomidae). Oecologia 38, 317–323 (1979).

  • 38.

    Kaltenpoth, M., Göttler, W., Herzner, G. & Strohm, E. Symbiotic bacteria protect wasp larvae from fungal infestation. Curr. Biol. 15, 475–479 (2005).

  • 39.

    Chater, K. F. & Chandra, G. The evolution of development in Streptomyces analysed by genome comparisons. FEMS Microbiol. Rev. 30, 651–672 (2006).

  • 40.

    Getahun, M. N. et al. Intracellular regulation of the insect chemoreceptor complex impacts odour localization in flying insects. J. Exp. Biol. 219, 3428–3438 (2016).

  • 41.

    Missbach, C. et al. Evolution of insect olfactory receptors. eLife 3, e02115 (2014).

  • 42.

    Vos, M., Wolf, A. B., Jennings, S. J. & Kowalchuk, G. A. Micro-scale determinants of bacterial diversity in soil. FEMS Microbiol. Rev. 37, 936–954 (2013).

  • 43.

    Holighaus, G. & Rohlfs, M. Volatile and non-volatile fungal oxylipins in fungus-invertebrate interactions. Fungal Ecol. 38, 28–36 (2019).

    • Article
    • Google Scholar
  • 44.

    Datsenko, K. A. & Wanner, B. W. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

  • 45.

    Gust, B., Challis, G. L., Fowler, K., Kieser, T. & Chater, K. F. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl Acad. Sci. USA 100, 1541–1546 (2003).

  • 46.

    Gust, B. et al. Lambda red-mediated genetic manipulation of antibiotic-producing Streptomyces. Adv. Appl. Microbiol. 54, 107–128 (2004).

  • 47.

    Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. Practical Streptomyces Genetics (The John Innes Foundation, 2000).

  • 48.

    Bush, M. J., Bibb, M. J., Chandra, G., Findlay, K. C. & Buttner, M. J. Genes required for aerial growth, cell division, and chromosome segregation are targets of WhiA before sporulation in Streptomyces venezuelae. mBio 4, e00684–00613 (2013).

  • 49.

    Lindén, A. & Mäntyniemi, S. Using the negative binomial distribution to model overdispersion in ecological count data. Ecology 92, 1414–1421 (2011).

    • Article
    • Google Scholar
  • 50.

    Holmstrup, M. et al. Physiological and molecular responses of springtails exposed to phenanthrene and drought. Environ. Poll. 184, 370–376 (2014).

  • 51.

    Agger, S. A., Lopez-Gallego, F., Hoye, T. R. & Schmidt-Dannert, C. Identification of sesquiterpene synthases from Nostoc punctiforme PCC 73102 and Nostoc sp. strain PCC 7120. J. Bacteriol. 190, 6084–6096 (2008).

  • 52.

    Andreadis, S. S., Cloonan, K. R., Myrick, A. J., Chen, H. & Baker, T. C. Isolation of a female-emitted sex pheromone component of the fungus gnat, Lycoriella ingenua, attractive to males. J. Chem. Ecol. 41, 1127–1136 (2015).

  • 53.

    Citron, C. A., Barra, L., Wink, J. & Dickschat, J. S. Volatiles from nineteen recently genome sequenced actinomycetes. Org. Biomol. Chem. 13, 2673–2683 (2015).

  • 54.

    He, X. & Cane, D. E. Mechanism and stereochemistry of the germacradienol/germacrene D synthase of Streptomyces coelicolor A3(2). J. Am. Chem. Soc. 126, 2678–2679 (2004).

  • 55.

    Beadle, G. W. & Ephrussi, B. The differentiation of eye pigments in Drosophila as studied by transplantation. Genetics 21, 225–247 (1936).

  • 56.

    Bengtsson, G., Hedlund, K. & Rundgren, S. Selective odour perception in the soil collembola Onychiurus armatus. J. Chem. Ecol. 17, 2113–2125 (1991).

  • 57.

    Kaplan, E. L. & Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958).

    • Article
    • Google Scholar
  • 58.

    Bibb, M. J., Domonkos, A., Chandra, G. & Buttner, M. J. Expression of the chaplin and rodlin hydrophobic sheath proteins in Streptomyces venezuelae is controlled by σBldN and a cognate anti-sigma factor, RsbN. Mol. Microbiol. 84, 1033–1049 (2012).

  • 59.

    Hesketh, A., Kock, H., Mootien, S. & Bibb, M. The role of absC, a novel regulatory gene for secondary metabolism, in zinc-dependent antibiotic production in Streptomyces coelicolor A3(2). Mol. Microbiol. 74, 1427–1444 (2009).

  • 60.

    Dromph, K. M. Dispersal of entomopathogenic fungi by collembolans. Soil Biol. Biochem. 33, 2047–2051 (2001).


  • Source: Ecology - nature.com

    3 Questions: Greg Britten on how marine life can recover by 2050

    The river–groundwater interface as a hotspot for arsenic release