in

Predators and dispersers: Context-dependent outcomes of the interactions between rodents and a megafaunal fruit plant

  • 1.

    Martin, P. S. & Klein, R. G. Quaternary extinctions: a prehistoric revolution. (University of Arizona Press, 1989).

  • 2.

    Janzen, D. H. & Martin, P. S. Neotropical anachronisms – The fruits the Gomphoteres ate. Science 215, 19–27, https://doi.org/10.1126/science.215.4528.19 (1982).

  • 3.

    Donatti, C., Galetti, M., Pizo, M., Guimaraes Jr, P. & Jordano, P. In Seed dispersal: theory and its application in a changing world (eds Dennis, A. J., Green, R. J., Schupp, E. W. & Westcott, D. A.) 104–123 (CAB International, 2007).

  • 4.

    Guimarães, P. R., Galetti, M. & Jordano, P. Seed dispersal anachronisms: Rethinking the fruits extinct megafauna ate. Plos One 3, e1745, https://doi.org/10.1371/journal.pone.0001745 (2008).

  • 5.

    Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biological Reviews 93, 845–862 (2018).

    • Article
    • Google Scholar
  • 6.

    Jansen, P. A. et al. Thieving rodents as substitute dispersers of megafaunal seeds. Proceedings of the National Academy of Sciences of the United States of America 109, 12610–12615, https://doi.org/10.1073/pnas.1205184109 (2012).

  • 7.

    Jordano, P. In Seeds: The ecology and regeneration of plant communities (ed. Fenner, M.) Ch. 6, 125–166 (CABI Publ., 2000).

  • 8.

    Guimarães, P. R., Lopes, P. F., Lyra, M. L. & Muriel, A. P. Fleshy pulp enhances the location of Syagrus romanzoffiana (Arecaceae) fruits by seed-dispersing rodents in an Atlantic forest in south-eastern Brazil. Journal of Tropical Ecology 21, 109–112 (2005).

    • Article
    • Google Scholar
  • 9.

    Pires, M. M., Guimarães, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long‐distance seed‐dispersal services. Ecography 41, 153–163 (2018).

    • Article
    • Google Scholar
  • 10.

    Hirsch, B. T., Kays, R., Pereira, V. E. & Jansen, P. A. Directed seed dispersal towards areas with low conspecific tree density by a scatter-hoarding rodent. Ecology Letters 15, 1423–1429, https://doi.org/10.1111/ele.12000 (2012).

    • Article
    • Google Scholar
  • 11.

    McConkey, K. R., Brockelman, W. Y., Saralamba, C. & Nathalang, A. Effectiveness of primate seed dispersers for an “oversized” fruit, Garcinia benthamii. Ecology 96, 2737–2747 (2015).

    • Article
    • Google Scholar
  • 12.

    Vander Wall, S. B. Food hoarding in animals. (University of Chicago Press, 1990).

  • 13.

    Vander Wall, S. B. How plants manipulate the scatter-hoarding behaviour of seed-dispersing animals. Philosophical Transactions of the Royal Society B-Biological Sciences 365, 989–997, https://doi.org/10.1098/rstb.2009.0205 (2010).

    • Article
    • Google Scholar
  • 14.

    Perea, R., San Miguel, A. & Gil, L. Leftovers in seed dispersal: ecological implications of partial seed consumption for oak regeneration. Journal of Ecology 99, 194–201, https://doi.org/10.1111/j.1365-2745.2010.01749.x (2011).

    • Article
    • Google Scholar
  • 15.

    Wang, B., Chen, J. & Corlett, R. T. Factors influencing repeated seed movements by scatter-hoarding rodents in an alpine forest. Scientific Reports 4, 4786, https://doi.org/10.1038/srep04786 (2014).

  • 16.

    Lichti, N. I., Steele, M. A. & Swihart, R. K. Seed fate and decision-making processes in scatter-hoarding rodents. Biological Reviews 92, 474–504, https://doi.org/10.1111/brv.12240 (2017).

    • Article
    • Google Scholar
  • 17.

    Loayza, A. P., Carvajal, D. E., Garcia-Guzman, P., Gutierrez, J. R. & Squeo, F. A. Seed predation by rodents results in directed dispersal of viable seed fragments of an endangered desert shrub. Ecosphere 5, art43, https://doi.org/10.1890/es13-00283.1 (2014).

    • Article
    • Google Scholar
  • 18.

    Vander Wall, S. B. & Beck, M. J. A Comparison of Frugivory and Scatter-Hoarding Seed-Dispersal Syndromes. Botanical Review 78, 10–31, https://doi.org/10.1007/s12229-011-9093-9 (2012).

    • Article
    • Google Scholar
  • 19.

    Shiels, A. B. & Drake, D. R. Are introduced rats (Rattus rattus) both seed predators and dispersers in Hawaii? Biological Invasions 13, 883–894 (2011).

    • Article
    • Google Scholar
  • 20.

    Bronstein, J. L. Conditional outcomes in mutualistic interactions. Trends in Ecology & Evolution 9, 214–217, https://doi.org/10.1016/0169-5347(94)90246-1 (1994).

  • 21.

    Agrawal, A. A. et al. Filling key gaps in population and community ecology. Frontiers in Ecology and the Environment 5, 145–152, https://doi.org/10.1890/1540-9295(2007)5[145:fkgipa]2.0.co;2 (2007).

  • 22.

    Holland, J. N. & DeAngelis, D. L. Consumer-resource theory predicts dynamic transitions between outcomes of interspecific interactions. Ecology Letters 12, 1357–1366, https://doi.org/10.1111/j.1461-0248.2009.01390.x (2009).

    • Article
    • Google Scholar
  • 23.

    Chamberlain, S. A., Bronstein, J. L. & Rudgers, J. A. How context dependent are species interactions? Ecology Letters 17, 881–890, https://doi.org/10.1111/ele.12279 (2014).

    • Article
    • Google Scholar
  • 24.

    Schupp, E. W., Jordano, P. & Gomez, J. M. Seed dispersal effectiveness revisited: a conceptual review. New Phytologist 188, 333–353, https://doi.org/10.1111/j.1469-8137.2010.03402.x (2010).

    • Article
    • Google Scholar
  • 25.

    Parciak, W. Environmental variation in seed number, size, and dispersal of a fleshy‐fruited plant. Ecology 83, 780–793 (2002).

    • Article
    • Google Scholar
  • 26.

    Loayza, A. P., Herrera-Madariaga, M. A., Carvajal, D. E., García-Guzmán, P. & Squeo, F. A. Conspecific plants are better ‘nurses’ than rocks: consistent results revealing intraspecific facilitation as a process that promotes establishment in a hyper-arid environment. AoB Plants 9, plx056 (2017).

    • Article
    • Google Scholar
  • 27.

    Loayza, A. P., Loiselle, B. A. & Rios, R. S. Context-dependent recruitment of Guettarda viburnoides in a Neotropical forest–savanna mosaic. American Journal of Botany 98, 1317–1326, https://doi.org/10.3732/ajb.1000478 (2011).

    • Article
    • Google Scholar
  • 28.

    García-Guzmán, P., Loayza, A. P., Carvajal, D. E., Letelier, L. & Squeo, F. A. The ecology, distribution and conservation status of Myrcianthes coquimbensis: a globally endangered endemic shrub of the Chilean Coastal Desert. Plant Ecology & Diversity 5, 197–204, https://doi.org/10.1080/17550874.2011.583286 (2012).

    • Article
    • Google Scholar
  • 29.

    Carvajal, D. E., Loayza, A. P., Rios, R. S., Gianoli, E. & Squeo, F. A. Population variation in drought-resistance strategies in a desert shrub along an aridity gradient: Interplay between phenotypic plasticity and ecotypic differentiation. Perspectives in Plant Ecology, Evolution and Systematics 29, 12–19 (2017).

    • Article
    • Google Scholar
  • 30.

    Labarca, R. L. La meso y megafauna terrestre extinta del Pleistoceno de Chile. Publicación Ocasional del Museo Nacional de Historia Natural de Chile 63, 401–465 (2015).

    • Google Scholar
  • 31.

    Luna, C. A., Loayza, A. P. & Squeo, F. A. Fruit size determines the role of three scatter-hoarding rodents as dispersers or seed predators of a fleshy-fruited Atacama Desert shrub. Plos One 11, e0166824, https://doi.org/10.1371/journal.pone.0166824 (2016).

  • 32.

    Janzen, D. H. Hervibores and the number of tree species in tropical forests. The American Naturalist 104, 28 (1970).

    • Article
    • Google Scholar
  • 33.

    Connell, J. H. In Dynamics of Populations (ed. P.J.; Gradwell den Boer, G. R.) 298–312 (The Netherlands: Centre for Agricultural Publishing and Documentation, 1971).

  • 34.

    Jaksic, F. M. Predation upon small mammals in shrublands and grasslands of southern South America: ecological correlates and presumable consequences. Revista Chilena de Historia Natural 59 (1986).

  • 35.

    Vasquez, R. A. Patch utilization by three species of Chilean rodents differing in body size and mode of locomotion. Ecology 77, 2343–2351, https://doi.org/10.2307/2265736 (1996).

    • Article
    • Google Scholar
  • 36.

    Lagos, V. O., Bozinovic, F. & Contreras, L. C. Microhabitat use by a small diurnal rodent (Octodon degus) in a semiarid environment: thermoregulatory constraints or predation risk? Journal of Mammalogy 76, 900–905 (1995).

    • Article
    • Google Scholar
  • 37.

    Sotes, G. J., Bustamante, R. O. & Henríquez, C. A. Leaf litter is essential for seed survival of the endemic endangered tree Pouteria splendens (Sapotaceae) from central Chile. Web Ecology 18, 1 (2018).

    • Article
    • Google Scholar
  • 38.

    Dickie, J. B. & Pritchard, H. W. Systematic and evolutionary aspects of desiccation tolerance in seeds. Desiccation and survival in plants: drying without dying. Wallingford, UK: CAB International, 239–259 (2002).

  • 39.

    Farnsworth, E. The ecology and physiology of viviparous and recalcitrant seeds. Annual Review of Ecology and Systematics 31, 107–138 (2000).

    • Article
    • Google Scholar
  • 40.

    Keen-Rhinehart, E., Dailey, M. J. & Bartness, T. Physiological mechanisms for food-hoarding motivation in animals. Philosophical Transactions of the Royal Society B: Biological Sciences 365, 961–975 (2010).

    • Article
    • Google Scholar
  • 41.

    Rusch, U., Midgley, J. & Anderson, B. Seasonal fluctuations in rodent seed caching and consumption behaviour in fynbos shrublands: implications for fire management. South African Journal of Botany 93, 217–221 (2014).

    • Article
    • Google Scholar
  • 42.

    Galvez, D., Kranstauber, B., Kays, R. W. & Jansen, P. A. Scatter hoarding by the Central American agouti: a test of optimal cache spacing theory. Animal Behaviour 78, 1327–1333 (2009).

    • Article
    • Google Scholar
  • 43.

    Meserve, P. L., Kelt, D. A., Previtali, M. A., Milstead, W. B. & Gutiérrez, J. R. Global climate change and small mammal populations in north-central Chile. Journal of Mammalogy 92, 1223–1235 (2011).

    • Article
    • Google Scholar
  • 44.

    Muñoz, A. & Bonal, R. Are you strong enough to carry that seed? Seed size/body size ratios influence seed choices by rodents. Animal Behaviour 76, 709–715 (2008).

    • Article
    • Google Scholar
  • 45.

    Houston, J. Variability of precipitation in the Atacama Desert: its causes and hydrological impact. International Journal of Climatology 26, 2181–2198 (2006).

  • 46.

    Dai, A. Increasing drought under global warming in observations and models. Nature Climate Change 3, 52 (2013).

  • 47.

    Muñoz-Concha, D. & Davey, M. R. Gomortega keule, the neglected and endangered Chilean fruit tree. European journal of forest research 130, 677–693 (2011).

    • Article
    • Google Scholar
  • 48.

    Corlett, R. T. The shifted baseline: Prehistoric defaunation in the tropics and its consequences for biodiversity conservation. Biological Conservation 163, 13–21 (2013).

    • Article
    • Google Scholar
  • 49.

    Peña‐Egaña, M., Loayza, A. P. & Squeo, F. A. Are pulp consumers effective seed dispersers? Tests with a large‐seeded tropical relict tree. Biotropica 50, 898–907 (2018).

    • Article
    • Google Scholar
  • 50.

    Johnson, C. N. Ecological consequences of Late Quaternary extinctions of megafauna. Proceedings of the Royal Society B-Biological Sciences 276, 2509–2519, https://doi.org/10.1098/rspb.2008.1921 (2009).

  • 51.

    Schulz, J. J., Cayuela, L., Echeverria, C., Salas, J. & Benayas, J. M. R. Monitoring land cover change of the dryland forest landscape of Central Chile (1975–2008). Applied Geography 30, 436–447 (2010).

    • Article
    • Google Scholar
  • 52.

    Jansen, P. A., Bongers, F. & Hemerik, L. Seed mass and mast seeding enhance dispersal by a Neotropical scatter-hoarding rodent. Ecological Monographs 74, 569–589 (2004).

    • Article
    • Google Scholar
  • 53.

    Hall, J. A. & Walter, G. H. Seed dispersal of the Australian cycad Macrozamia miquelii (Zamiaceae): Are cycads megafauna‐dispersed “grove forming” plants? American journal of botany 100, 1127–1136 (2013).

    • Article
    • Google Scholar
  • 54.

    Pires, M. M. et al. Reconstructing past ecological networks: the reconfiguration of seed-dispersal interactions after megafaunal extinction. Oecologia 175, 1247–1256 (2014).

  • 55.

    Pires, M. M., Guimarães, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long‐distance seed‐dispersal services. Ecography (2017).

  • 56.

    Kistler, L. et al. Gourds and squashes (Cucurbita spp.) adapted to megafaunal extinction and ecological anachronism through domestication. Proceedings of the National Academy of Sciences 112, 15107–15112 (2015).

  • 57.

    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nature Climate Change 6, 166 (2016).

  • 58.

    Landrum, L. R. & Grifo, F. T. Myrcianthes (Myrtaceae) in Chile. Brittonia 40 (1988).

  • 59.

    Grifo, F. T. A revision of Myrcinathes BERG. (Myrtaceae) Doctor of Philosophy thesis, Cornell University, (1992).

  • 60.

    Peña, M. Fenología reproductiva de Myrcianthes coquimbensis y su relación con los patrones de precipitación en todo su rango de distribución (Barrancones-Totoralillo, región de Coquimbo, Chile) Ingeniero Agrónomo thesis, Universidad de La Serena, (2016).

  • 61.

    Pizo, M. A. The seed dispersers and fruit syndromes of Myrtaceae in the Brazilian Atlantic forest. Seed dispersal and frugivory: ecology, evolution and conservation, 129–143 (2002).

  • 62.

    Loayza, A. P., Gachon, P. R., Garcia-Guzman, P., Carvajal, D. E. & Squeo, F. A. Germination, seedling performance, and root production after simulated partial seed predation of a threatened Atacama Desert shrub. Revista Chilena De Historia Natural 88, https://doi.org/10.1186/s40693-015-0039-1 (2015).

  • 63.

    Calviño-Cancela, M. & Martín-Herrero, J. Effectiveness of a varied assemblage of seed dispersers of a fleshy‐fruited plant. Ecology 90, 3503–3515 (2009).

    • Article
    • Google Scholar
  • 64.

    Manly, B. F. Randomization, bootstrap and Monte Carlo methods in biology. Vol. 70 (CRC press, 2006).


  • Source: Ecology - nature.com

    Soil bacterial diversity correlates with precipitation and soil pH in long-term maize cropping systems

    Titan’s missing river deltas and an Earthly climate connection