in

Early Holocene crop cultivation and landscape modification in Amazonia

  • 1.

    Larson, G. et al. Current perspectives and the future of domestication studies. Proc. Natl Acad. Sci. USA 111, 6139–6146 (2014).

  • 2.

    Zohary, D. & Hopf, M. Domestication of Plants in the Old World: the Origin and Spread of Cultivated Plants in West Asia, Europe and the Nile Valley (Oxford Univ. Press, 2000).

  • 3.

    Zeder, M. A., Bradley, D. G., Smith, B. D. & Emshwiller, E. Documenting Domestication: New Genetic and Archaeological Paradigms (Univ. California Press, 2006).

  • 4.

    Piperno, D. R. & Pearsall, D. M. The Origins of Agriculture in the Lowland Neotropics (Academic, 1998).

  • 5.

    Piperno, D. R. The origins of plant cultivation and domestication in the New World tropics: patterns, process, and new developments. Curr. Anthropol. 52, S453–S470 (2011).

    • Article
    • Google Scholar
  • 6.

    Clement, C. R., de Cristo-Araújo, M., d’Eeckenbrugge, G. C., Alves Pereira, A. & Picanço-Rodrigues, D. Origin and domestication of native Amazonian crops. Diversity (Basel) 2, 72–106 (2010).

    • Article
    • Google Scholar
  • 7.

    Olsen, K. & Schaal, B. Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. Am. J. Bot. 88, 131–142 (2001).

  • 8.

    Sanjur, O. I., Piperno, D. R., Andres, T. C. & Wessel-Beaver, L. Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: implications for crop plant evolution and areas of origin. Proc. Natl Acad. Sci. USA 99, 535–540 (2002).

  • 9.

    Clement, C. R. et al. The domestication of Amazonia before European conquest. Proc. R. Soc. Lond. B 282, 20150813 (2015).

  • 10.

    Scaldaferro, M. A., Barboza, G. E. & Acosta, M. C. Evolutionary history of the chili pepper Capsicum baccatum L. (Solanaceae): domestication in South America and natural diversification in the seasonally dry tropical forests. Biol. J. Linn. Soc. 124, 466–478 (2018).

    • Article
    • Google Scholar
  • 11.

    Watling, J. et al. Direct archaeological evidence for Southwestern Amazonia as an early plant domestication and food production centre. PLoS ONE 13, e0199868 (2018).

    • Article
    • Google Scholar
  • 12.

    Lombardo, U. et al. Early and middle Holocene hunter-gatherer occupations in western Amazonia: the hidden shell middens. PLoS ONE 8, e72746 (2013).

  • 13.

    Capriles, J. M. et al. Persistent Early to Middle Holocene tropical foraging in southwestern Amazonia. Sci. Adv. 5, eaav5449 (2019).

  • 14.

    Hilbert, L. et al. Evidence for mid-Holocene rice domestication in the Americas. Nat. Ecol. Evol. 1, 1693–1698 (2017).

    • Article
    • Google Scholar
  • 15.

    Lombardo, U. et al. Holocene land cover change in south-western Amazonia inferred from paleoflood archives. Global Planet. Change 174, 105–114 (2019).

  • 16.

    Chandler-Ezell, K., Pearsall, D. M. & Zeidler, J. A. Root and tuber phytoliths and starch grains document manioc (Manihot esculenta) arrowroot (Maranta arundinacea) and llerén (Calathea sp.) at the Real Alto site, Ecuador. Econ. Bot. 60, 103–120 (2006).

    • Article
    • Google Scholar
  • 17.

    Piperno, D. R. Phytoliths (AltaMira Press, 2006).

  • 18.

    Morcote-Ríos, G., Bernal, R. & Raz, L. Phytoliths as a tool for archaeobotanical, palaeobotanical and palaeoecological studies in Amazonian palms. Bot. J. Linn. Soc. 182, 348–360 (2016).

    • Article
    • Google Scholar
  • 19.

    Hanelt, P., Buttner, R. & Mansfeld, R. Mansfeld’s Encyclopedia of Agricultural and Horticultural Crops (except Ornamentals) (Springer, 2001).

  • 20.

    Smith, B. D. The initial domestication of Cucurbita pepo in the Americas 10,000 years ago. Science 276, 932–934 (1997).

  • 21.

    Piperno, D. R. & Stothert, K. E. Phytolith evidence for early Holocene Cucurbita domestication in southwest Ecuador. Science 299, 1054–1057 (2003).

  • 22.

    Dillehay, T. D. & Piperno, D. R. in The Cambridge World Prehistory (eds Renfrew, C. & Bahn, P.) 970–985 (Cambridge Univ. Press, 2014).

  • 23.

    Kistler, L. et al. Multiproxy evidence highlights a complex evolutionary legacy of maize in South America. Science 362, 1309–1313 (2018).

  • 24.

    Rival, L. & McKey, D. Domestication and diversity in manioc (Manihot esculenta Crantz ssp. esculenta, Euphorbiaceae). Curr. Anthropol. 49, 1119–1128 (2008).

    • Article
    • Google Scholar
  • 25.

    Rodrigues, L., Lombardo, U. & Veit, H. Design of pre-Columbian raised fields in the Llanos de Moxos, Bolivian Amazon: differential adaptations to the local environment? J. Archaeol. Sci. Rep. 17, 366–378 (2018).

    • Google Scholar
  • 26.

    McKey, D., Cavagnaro, T. R., Cliff, J. & Gleadow, R. J. C. Chemical ecology in coupled human and natural systems: people, manioc, multitrophic interactions and global change. Chemoecology 20, 109–133 (2010).

  • 27.

    Jones, M. in The Evolution of Hominin Diets (eds Hublin, J.-J. & Richards, M. P.) 171–180 (Springer, 2009).

  • 28.

    Aceituno, F. J. & Loaiza, N. The origins and early development of plant food production and farming in Colombian tropical forests. J. Anthropol. Archaeol. 49, 161–172 (2018).

    • Article
    • Google Scholar
  • 29.

    Smith, B. D. General patterns of niche construction and the management of ‘wild’ plant and animal resources by small-scale pre-industrial societies. Phil. Trans. R. Soc. Lond. B 366, 836–848 (2011).

    • Article
    • Google Scholar
  • 30.

    Lombardo, U., May, J.-H. & Veit, H. Mid- to late-Holocene fluvial activity behind pre-Columbian social complexity in the southwestern Amazon basin. Holocene 22, 1035–1045 (2012).

  • 31.

    Manning, A. D., Fischer, J. & Lindenmayer, D. B. Scattered trees are keystone structures – implications for conservation. Biol. Conserv. 132, 311–321 (2006).

    • Article
    • Google Scholar
  • 32.

    Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).

    • Article
    • Google Scholar
  • 33.

    Berkunsky, I. et al. Assessing the use of forest islands by parrot species in a Neotropical savanna. Avian Conserv. Ecol. 10, 11 (2015).

    • Google Scholar
  • 34.

    Prümers, H. & Jaimes Betancourt, C. 100 años de investigación arqueológica en los Llanos de Mojos. Arqueoantropológicas 4, 11–53 (2014).

    • Google Scholar
  • 35.

    Junqueira, A. B., Shepard, G. H. & Clement, C. R. J. E. B. Secondary forests on anthropogenic soils of the middle Madeira river: valuation, local knowledge, and landscape domestication in Brazilian Amazonia. Econ. Bot. 65, 85–99 (2011).

  • 36.

    Lombardo, U., Canal-Beeby, E. & Veit, H. Eco-archaeological regions in the Bolivian Amazon: linking pre-Columbian earthworks and environmental diversity. Geogr. Helv. 66, 173–182 (2011).

    • Article
    • Google Scholar
  • 37.

    Langstroth Plotkin, R. Biogeography of the Llanos de Moxos: natural and anthropogenic determinants. Geogr. Helv. 66, 183–192 (2011).

    • Article
    • Google Scholar
  • 38.

    Lombardo, U., Denier, S. & Veit, H. Soil properties and pre-Columbian settlement patterns in the monumental mounds region of the Llanos de Moxos, Bolivian Amazon. Soil (Gottingen) 1, 65–81 (2015).

  • 39.

    Rodrigues, L., Lombardo, U., Canal Beeby, E. & Veit, H. Linking soil properties and pre-Columbian agricultural strategies in the Bolivian lowlands: the case of raised fields in Exaltación. Quat. Int. 437, 143–155 (2017).

    • Article
    • Google Scholar
  • 40.

    Boixadera, J., Poch, R. M., García-González, M. T. & Vizcayno, C. Hydromorphic and clay-related processes in soils from the Llanos de Moxos (northern Bolivia). Catena 54, 403–424 (2003).

  • 41.

    Hanagarth, W. Acerca de la Geoecología de las Sabanas del Beni en el Noreste de Bolivia (Instituto de Ecología, 1993).

  • 42.

    Lombardo, U., Ruiz-Pérez, J. & Madella, M. Sonication improves the efficiency, efficacy and safety of phytolith extraction. Rev. Palaeobot. Palynol. 235, 1–5 (2016).

    • Article
    • Google Scholar
  • 43.

    Piperno, D. R. Identifying crop plants with phytoliths (and starch grains) in Central and South America: a review and an update of the evidence. Quat. Int. 193, 146–159 (2009).

    • Article
    • Google Scholar
  • 44.

    Iriarte, J. Assessing the feasibility of identifying maize through the analysis of cross-shaped size and three-dimensional morphology of phytoliths in the grasslands of southeastern South America. J. Archaeol. Sci. 30, 1085–1094 (2003).

    • Article
    • Google Scholar
  • 45.

    Watling, J. et al. Differentiation of Neotropical ecosystems by modern soil phytolith assemblages and its implications for palaeoenvironmental and archaeological reconstructions II: southwestern Amazonian forests. Rev. Palaeobot. Palynol. 226, 30–43 (2016).

    • Article
    • Google Scholar
  • 46.

    Dickau, R. et al. Differentiation of Neotropical ecosystems by modern soil phytolith assemblages and its implications for palaeoenvironmental and archaeological reconstructions. Rev. Palaeobot. Palynol. 193, 15–37 (2013).

    • Article
    • Google Scholar
  • 47.

    Hogg, A. G. et al. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55, 1889–1903 (2013).

  • 48.

    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    • Article
    • Google Scholar
  • 49.

    Piperno, D. R. et al. Phytoliths in Cucurbita and other Neotropical Cucurbitaceae and their occurrence in early Archaeological sites from the lowland American tropics. J. Arch. Sci. 27, 193–208 (2000).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Soil bacterial diversity correlates with precipitation and soil pH in long-term maize cropping systems

    Titan’s missing river deltas and an Earthly climate connection