in

The fate of carbon in a mature forest under carbon dioxide enrichment

  • 1.

    Le Quéré, C. L. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).

    • ADS
    • Google Scholar
  • 2.

    Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).

  • 3.

    Walker, A. P. et al. Decadal biomass increment in early secondary successional woody ecosystems is increased by CO2 enrichment. Nat. Commun. 10, 454 (2019).

  • 4.

    Norby, R. J. & Zak, D. R. Ecological lessons from Free-Air CO2 Enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).

    • Google Scholar
  • 5.

    Leuzinger, S. & Hättenschwiler, S. Beyond global change: lessons from 25 years of CO2 research. Oecologia 171, 639–651 (2013).

  • 6.

    Arora, V. K. et al. Carbon-concentration and carbon-climate feedbacks in CMIP5 Earth system models. J. Clim. 26, 5289–5314 (2013).

    • ADS
    • Google Scholar
  • 7.

    Ellsworth, D. S. et al. Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nat. Clim. Chang. 7, 279–282 (2017).

  • 8.

    Körner, C. et al. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309, 1360–1362 (2005).

  • 9.

    Ryan, M. G. Three decades of research at Flakaliden advancing whole-tree physiology, forest ecosystem and global change research. Tree Physiol. 33, 1123–1131 (2013).

  • 10.

    Klein, T. et al. Growth and carbon relations of mature Picea abies trees under 5 years of free-air CO2 enrichment. J. Ecol. 104, 1720–1733 (2016).

    • CAS
    • Google Scholar
  • 11.

    Norby, R. J. et al. Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytol. 209, 17–28 (2016).

  • 12.

    Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA 116, 4382–4387 (2019).

  • 13.

    Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Chang. 7, 220–226 (2017).

    • ADS
    • Google Scholar
  • 14.

    Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).

  • 15.

    Luo, Y. et al. Progressive nitrogen limitation of ecosystem response to rising atmospheric carbon dioxide. Bioscience 54, 731–739 (2004).

    • Google Scholar
  • 16.

    DeLucia, E. H. et al. Net primary production of a forest ecosystem with experimental CO2 enrichment. Science 284, 1177–1179 (1999).

  • 17.

    Crous, K., Ósvaldsson, A. & Ellsworth, D. S. Is phosphorus limiting in a mature Eucalyptus woodland? Phosphorus fertilization stimulates stem growth. Plant Soil 391, 293–305 (2015).

    • CAS
    • Google Scholar
  • 18.

    Medlyn, B. E. et al. Using models to guide field experiments: a priori predictions for the CO2 response of a nutrient- and water-limited native eucalypt woodland. Glob. Change Biol. 22, 2834–2851 (2016).

    • ADS
    • Google Scholar
  • 19.

    Medlyn, B. E. et al. Using ecosystem experiments to improve vegetation models. Nat. Clim. Chang. 5, 528–534 (2015).

    • ADS
    • Google Scholar
  • 20.

    Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).

    • ADS
    • Google Scholar
  • 21.

    Yang, J. et al. Low sensitivity of gross primary production to elevated CO2 in a mature eucalypt woodland. Biogeosciences 17, 265–279 (2020).

    • ADS
    • Google Scholar
  • 22.

    DeLucia, E. H., Drake, J. E., Thomas, R. B. & Gonzalez-Meler, M. Forest carbon use efficiency: is respiration a constant fraction of gross primary production? Glob. Change Biol. 13, 1157–1167 (2007).

    • ADS
    • Google Scholar
  • 23.

    Norby, R. J. Forest canopy productivity index. Nature 381, 564 (1996).

  • 24.

    Duursma, R. A. et al. Canopy leaf area of a mature evergreen Eucalyptus woodland does not respond to elevated atmospheric CO2 but tracks water availability. Glob. Change Biol. 22, 1666–1676 (2016).

    • ADS
    • Google Scholar
  • 25.

    Drake, J. E. et al. Short-term carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric CO2 concentration. Glob. Change Biol. 22, 380–390 (2016).

    • ADS
    • Google Scholar
  • 26.

    Drake, J. E. et al. Three years of soil respiration in a mature eucalypt woodland exposed to atmospheric CO2 enrichment. Biogeochemistry 139, 85–101 (2018).

    • CAS
    • Google Scholar
  • 27.

    Drake, J. E. et al. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecol. Lett. 14, 349–357 (2011).

  • 28.

    Hasegawa, S., Macdonald, C. A. & Power, S. A. Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorus-limited Eucalyptus woodland. Glob. Change Biol. 22, 1628–1643 (2016).

    • ADS
    • Google Scholar
  • 29.

    Ochoa-Hueso, R. et al. Rhizosphere-driven increase in nitrogen and phosphorus availability under elevated atmospheric CO2 in a mature Eucalyptus woodland. Plant Soil 416, 283–295 (2017).

    • CAS
    • Google Scholar
  • 30.

    Crous, K. Y., Wujeska-Klause, A., Jiang, M., Medlyn, B. E. & Ellsworth, D. S. Nitrogen and phosphorus retranslocation of leaves and stemwood in a mature Eucalyptus forest exposed to 5 years of elevated CO2. Front. Plant Sci. 10, 664 (2019).

  • 31.

    Zaehle, S. et al. Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperature Free-Air CO2 Enrichment studies. New Phytol. 202, 803–822 (2014).

  • 32.

    Fleischer, K. et al. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nat. Geosci. 12, 736–741 (2019).

  • 33.

    Todd-Brown, K. E. O. et al. Changes in soil organic carbon storage predicted by earth system models during the 21st century. Biogeosciences 11, 2341–2356 (2014).

  • 34.

    Kuzyakov, Y., Horwath, W. R., Dorodnikov, M. & Blagodatskaya, E. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: no changes in pools, but increased fluxes and accelerated cycles. Soil Biol. Biochem. 128, 66–78 (2019).

    • CAS
    • Google Scholar
  • 35.

    Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215 (2008).

  • 36.

    Jones, C. et al. 21st century compatible CO2 emissions and airborne fraction simulated by CMIP5 Earth System models under 4 representative concentration pathways. J. Clim. 26, 4398–4413 (2013).

    • ADS
    • Google Scholar
  • 37.

    Australia’s Agriculture, Fisheries And Forestry At A Glance 2012 https://www.agriculture.gov.au/about/publications/glance2012 (Department of Agriculture, Fisheries and Forestry, 2012).

  • 38.

    Global Forest Resources Assessment 2000 FAO Forestry Paper 140 (Food and Agricultural Organization of the United Nations, 2001).

  • 39.

    Gimeno, T. E., McVicar, T. R., O’Grady, A. P., Tissue, D. T. & Ellsworth, D. S. Elevated CO2 did not affect the hydrological balance of a mature native Eucalyptus woodland. Glob. Change Biol. 24, 3010–3024 (2018).

    • ADS
    • Google Scholar
  • 40.

    Hasegawa, S. et al. Elevated CO2 concentrations reduce C4 cover and decrease diversity of understorey plant community in a Eucalyptus woodland. J. Ecol. 106, 1483–1494 (2018).

    • CAS
    • Google Scholar
  • 41.

    Pathare, V. S. et al. Water availability affects seasonal CO2-induced photosynthetic enhancement in herbaceous species in a periodically dry woodland. Glob. Change Biol. 23, 5164–5178 (2017).

    • ADS
    • Google Scholar
  • 42.

    Paul, K. I. et al. Development and testing of allometric equations for estimating above-ground biomass of mixed-species environmental plantings. For. Ecol. Manage. 310, 483–494 (2013).

    • Google Scholar
  • 43.

    Collins, L. et al. Understorey productivity in temperate grassy woodland responds to soil water availability but not to elevated CO2. Glob. Change Biol. 24, 2366–2376 (2018).

    • ADS
    • Google Scholar
  • 44.

    Snowdon, P. et al. National Carbon Accounting System Technical Report no. 17 (Australian Greenhouse Office, 2000).

  • 45.

    Wallander, H. et al. Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils. Soil Biol. Biochem. 57, 1034–1047 (2013).

    • CAS
    • Google Scholar
  • 46.

    Buyer, J. S. & Sasser, M. High throughput phospholipid fatty acid analysis of soils. Appl. Soil Ecol. 61, 127–130 (2012).

    • Google Scholar
  • 47.

    Gherlenda, A. N., Esveld, J. L., Hall, A. A. G., Duursma, R. A. & Riegler, M. Boom and bust: rapid feedback responses between insect outbreak dynamics and canopy leaf area impacted by rainfall and CO2. Glob. Change Biol. 22, 3632–3641 (2016).

    • ADS
    • Google Scholar
  • 48.

    Facey, S. L. et al. Atmospheric change causes declines in woodland arthropods and impacts specific trophic groups. Agric. For. Entomol. 19, 101–112 (2017).

    • Google Scholar
  • 49.

    Murray, T. J., Tissue, D. T., Ellsworth, D. S. & Riegler, M. Interactive effects of pre-industrial, current and future CO2 and temperature on an insect herbivore of Eucalyptus. Oecologia 171, 1025–1035 (2013).

  • 50.

    Trakimas, G. et al. Ecological stoichiometry: a link between developmental speed and physiological stress in an omnivorous insect. Front. Behav. Neurosci. 13, 42 (2019).

  • 51.

    Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

  • 52.

    Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).

    • ADS
    • Google Scholar
  • 53.

    Gimeno, T. E. et al. Conserved stomatal behavior under elevated CO2 and varying water availability in a mature woodland. Funct. Ecol. 30, 700–709 (2016).

    • Google Scholar
  • 54.

    Yang, J. et al. Incorporating non-stomatal limitation improves the performance of leaf and canopy models at high vapor pressure deficit. Tree Physiol. 39, 1961-1974 (2019).

  • 55.

    Martins, C. S. C. et al. Identifying environmental drivers of greenhouse gas emissions under warming and reduced rainfall in boreal-temperate forests. Funct. Ecol. 31, 2356–2368 (2017).

    • Google Scholar
  • 56.

    Zhang, X. & Wang, W. The decomposition of fine and coarse roots: their global patterns and controlling factors. Sci. Rep. 5, 9940 (2015).

  • 57.

    Reich, P. B. et al. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410, 809–810 (2001).

  • 58.

    Gherlenda, A. N., Moore, B. D., Haigh, A. M., Johnson, S. N. & Riegler, M. Insect herbivory in a mature Eucalyptus woodland canopy depends on leaf phenology but not CO2 enrichment. BMC Ecol. 16, 47 (2016).

  • 59.

    Gherlenda, A. N. et al. Precipitation, not CO2 enrichment, drives insect herbivore frass deposition and subsequent nutrient dynamics in a mature Eucalyptus woodland. Plant Soil 399, 29–39 (2016).

    • CAS
    • Google Scholar
  • 60.

    Drake, J. E. et al. The partitioning of gross primary production for young Eucalyptus tereticornis trees under experimental warming and altered water availability. New Phytol. 222, 1298–1312 (2019).

  • 61.

    Salomón, R. L., Steppe, K., Crous, K. Y., Noh, N. J. & Ellsworth, D. S. Elevated CO2 does not affect stem CO2 efflux nor stem respiration in dry Eucalyptus woodland, but it shifts the vertical gradient in xylem CO2. Plant Cell Environ. 42, 2151–2164 (2019).

  • 62.

    Raumonen, P. et al. Fast automatic precision tree models from terrestrial laser scanner data. Remote Sens. 5, 491–520 (2013).

    • ADS
    • Google Scholar
  • 63.

    Calders, K. et al. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol. Evol. 6, 198–208 (2015).

    • Google Scholar
  • 64.

    Davidson, E. A., Samanta, S., Caramori, S. S. & Savage, K. The dual Arrhenius and Michaelis–Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Glob. Change Biol. 18, 371–384 (2012).

    • ADS
    • Google Scholar
  • 65.

    Guenther, A. B. et al. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 5, 1471–1492 (2012).

  • 66.

    Emmerson, K. M., Palmer, P. I., Thatcher, M., Haverd, V. & Guenther, A. B. Sensitivity of isoprene emissions to drought over south-eastern Australia: integrating models and satellite observations of soil moisture. Atmos. Environ. 209, 112–124 (2019).

  • 67.

    Kännaste, A., Copolovici, L. & Niinemets, Ü. Gas chromatography mass-spectrometry method for determination of biogenic volatile organic compounds emitted by plants. In Plant Isoprenoids: Methods And Protocols (ed. Rodríguez-Concepción, M.) 161–169 (Humana Press, 2014).

  • 68.

    Tholl, D. et al. Practical approaches to plant volatile analysis. Plant J. 45, 540–560 (2006).

  • 69.

    Li, T., Holst, T., Michelsen, A. & Rinnan, R. Amplification of plant volatile defense against insect herbivory in a warming Arctic tundra. Nat. Plants 5, 568–574 (2019).

  • 70.

    Johnsen, L. G., Skou, P. B., Khakimov, B. & Bro, R. Gas chromatography—mass spectrometry data processing made easy. J. Chromatogr. A 1503, 57–64 (2017).

  • 71.

    Keith, H. et al. Multiple measurements constrain estimates of net carbon exchange by a Eucalyptus forest. Agric. For. Meteorol. 149, 535–558 (2009).

    • ADS
    • Google Scholar
  • 72.

    Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    • Google Scholar
  • 73.

    R Core Team. R: A Language And Environment For Statistical Computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2018).

  • 74.

    Ouimette, A. P. et al. Accounting for carbon flux to mycorrhizal fungi may resolve discrepancies in forest carbon budgets. Ecosystems https://doi.org/10.1007/s10021-019-00440-3 (2019).

  • 75.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).

    • Google Scholar
  • 76.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).

    • Google Scholar
  • 77.

    Jiang, M., Felzer, B. S., Nielsen, U. N. & Medlyn, B. E. Biome-specific climatic space defined by temperature and precipitation predictability. Glob. Ecol. Biogeogr. 26, 1270–1282 (2017).

    • Google Scholar
  • 78.

    Scarascia-Mugnozza, G. et al. Response to elevated CO2 of a short rotation, multispecies Poplar plantation: the POPFACE/EUROFACE experiment. In Managed Ecosystems and CO 2 (eds. Nösberger, J. et al.) 173–195 (Springer, 2006).

  • 79.

    Linder, S. NPP Boreal Forest: Flakaliden, Sweden, 1986-1996, R1. Dataset at https://doi.org/10.3334/ORNLDAAC/201 (Oak Ridge National Laboratory Distributed Active Archive Center, 2013).

  • 80.

    Anderson-Teixeira, K. J. et al. ForC: a global database of forest carbon stock and fluxes. Ecology 99, 1507 (2018).

  • 81.

    Shangguan, W., Dai, Y., Duan, Q., Liu, B. & Yuan, H. A global soil data set for Earth system modelling. J. Adv. Model. Earth Syst. 6, 249–263 (2014).

    • ADS
    • Google Scholar
  • 82.

    Yang, X., Post, W.M., Thornton, P.E. and Jain, A. Global gridded soil phosphorus distribution maps at 0.5-degree resolution. Dataset at https://doi.org/10.3334/ORNLDAAC/1223 (Oak Ridge National Laboratory Distributed Active Archive Center, 2014).


  • Source: Ecology - nature.com

    Soil bacterial diversity correlates with precipitation and soil pH in long-term maize cropping systems

    Titan’s missing river deltas and an Earthly climate connection