in

Persistent global marine euxinia in the early Silurian

  • 1.

    Finnegan, S. et al. The magnitude and duration of late Ordovician-Early Silurian glaciation. Science 331, 903–906 (2011).

  • 2.

    Harper, D. A. T., Hammarlund, E. U. & Rasmussen, C. M. Ø. End Ordovician extinctions: a coincidence of causes. Gondwana Res. 25, 1294–1307 (2014).

  • 3.

    Rasmussen, C. M. Ø., Kröger, B., Nielsen, M. L. & Colmenar, J. Cascading trend of early Paleozoic marine radiations paused by late Ordovician extinctions. Proc. Natl Acad. Sci. USA 116, 7207–7213 (2019).

  • 4.

    Kröger, B., Franeck, F. & Rasmussen, C. M. Ø. The evolutionary dynamics of the early Palaeozoic marine biodiversity accumulation. Proc. R. Soc. B Biol. Sci. 286, 20191634 (2019).

    • Article
    • Google Scholar
  • 5.

    Finnegan, S., Rasmussen, C. M. Ø. & Harper, D. A. T. Biogeographic and bathymetric determinants of brachiopod extinction and survival during the Late Ordovician mass extinction. Proc. R. Soc. B Biol. Sci. 283, 20160007 (2016).

  • 6.

    Hammarlund, E. U. et al. A sulfidic driver for the end-Ordovician mass extinction. Earth Planet. Sci. Lett. 331–332, 128–139 (2012).

  • 7.

    Zou, C. et al. Ocean euxinia and climate change ‘double whammy’ drove the Late Ordovician mass extinction. Geology 46, 535–538 (2018).

  • 8.

    Bartlett, R. et al. Abrupt global-ocean anoxia during the Late Ordovician–early Silurian detected using uranium isotopes of marine carbonates. Proc. Natl Acad. Sci. USA 115, 5896–5901 (2018).

  • 9.

    Crampton, J. S., Cooper, R. A., Sadler, P. M. & Foote, M. Greenhouse-icehouse transition in the Late Ordovician marks a step change in extinction regime in the marine plankton. Proc. Natl Acad. Sci. USA 113, 1498–1503 (2016).

  • 10.

    Crampton, J. S. et al. Pacing of Paleozoic macroevolutionary rates by Milankovitch grand cycles. Proc. Natl Acad. Sci. 115, 5686–5691 (2018).

  • 11.

    Darroch, S. A. F. & Wagner, P. J. Response of beta diversity to pulses of Ordovician-Silurian mass extinction. Ecology 96, 532–549 (2015).

  • 12.

    Huang, B., Jin, J. & Rong, J. Y. Post-extinction diversification patterns of brachiopods in the early–middle Llandovery, Silurian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 493, 11–19 (2018).

    • Article
    • Google Scholar
  • 13.

    Melchin, M. J., Mitchell, C. E., Holmden, C. & Storch, P. Environmental changes in the late Ordovician-early Silurian: review and new insights from black shales and nitrogen isotopes. Geol. Soc. Am. Bull. 125, 1635–1670 (2013).

  • 14.

    Klemme, H. D. & Ulmishek, G. F. Effective petroleum source rocks of the world: stratigraphic, distribution and controlling depositional factors. Am. Assoc. Pet. Geol. Bull. 75, 1809–1851 (1991).

    • CAS
    • Google Scholar
  • 15.

    Page, A., Williams, M. & Zalasiewicz, J. Were transgressive black shales a negative feedback mechanism modulating glacio-eustatic cycles in the early Palaeozoic Icehouse? Micropalaeontol. Soc. Spec. Publ. Geol. Soc. Lond. 8, 123–156 (2007).

    • Google Scholar
  • 16.

    Pohl, A., Donnadieu, Y., Le Hir, G. & Ferreira, D. The climatic significance of late Ordovician-early Silurian black shales. Paleoceanography 32, 397–423 (2017).

  • 17.

    Ghienne, J. F. et al. A Cenozoic-style scenario for the end-Ordovician glaciation. Nat. Commun. 5, 4485 (2014).

  • 18.

    Sperling, E. A. et al. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523, 451–454 (2015).

  • 19.

    Gilleaudeau, G. J. et al. Uranium isotope evidence for limited euxinia in mid-Proterozoic oceans. Earth Planet. Sci. Lett. 521, 150–157 (2019).

  • 20.

    Lau, K. V., Macdonald, F. A., Maher, K. & Payne, J. L. Uranium isotope evidence for temporary ocean oxygenation in the aftermath of the Sturtian Snowball Earth. Earth Planet. Sci. Lett. 458, 282–292 (2017).

  • 21.

    Loydell, D. K. Graptolite biostratigraphy of the E1-NC174 core, Rhuddanian (lower Llandovery, Silurian), Murzuq Basin (Libya). Bull. Geosci. 84, 651–660 (2011).

    • Google Scholar
  • 22.

    Loydell, D. K. Graptolite biozone correlation charts. Geol. Mag. 149, 124–132 (2012).

  • 23.

    Gradstein, F. M. et al. The Geologic Time Scale 2012. Elsevier 1, (2012).

  • 24.

    Lüning, S., Craig, J., Loydell, D. K., Štorch, P. & Fitches, B. Lower Silurian ‘hot shales’ in North Africa and Arabia: regional distribution and depositional model. Earth Sci. Rev. 49, 121–200 (2000).

  • 25.

    Loydell, D. K., Butcher, A. & Frýda, J. The middle Rhuddanian (lower Silurian) ‘hot’ shale of North Africa and Arabia: an atypical hydrocarbon source rock. Palaeogeogr. Palaeoclimatol. Palaeoecol. 386, 233–256 (2013).

    • Article
    • Google Scholar
  • 26.

    Butcher, A. Chitinozoans from the middle Rhuddanian (lower Llandovery, Silurian) ‘hot’ shale in the E1-NC174 core, Murzuq Basin, SW Libya. Rev. Palaeobot. Palynol. 198, 62–91 (2013).

    • Article
    • Google Scholar
  • 27.

    Dahl, T. W. et al. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proc. Natl. Acad. Sci. USA 107, 17911–17915 (2010).

  • 28.

    Kendall, B. et al. Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period. Geochim. Cosmochim. Acta 156, 173–193 (2015).

  • 29.

    Lau, K. V. et al. Marine anoxia and delayed Earth system recovery after the end-Permian extinction. Proc. Natl Acad. Sci. USA 113, 2360–2365 (2016).

  • 30.

    Andersen, M. B., Stirling, C. H. & Weyer, S. Uranium isotope fractionation. Rev. Mineral. Geochem. 82, 799–850 (2017).

  • 31.

    Kendall, B., Dahl, T. W. & Anbar, A. D. The stable isotope geochemistry of molybdenum. Rev. Mineral. Geochem. 82, 683–732 (2017).

  • 32.

    Miller, C. A., Peucker-Ehrenbrink, B., Walker, B. D. & Marcantonio, F. Re-assessing the surface cycling of molybdenum and rhenium. Geochim. Cosmochim. Acta 75, 7146–7179 (2011).

  • 33.

    Dahl, T. W. et al. Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event. Earth Planet. Sci. Lett. 401, 313–326 (2014).

  • 34.

    Tribovillard, N., Algeo, T. J., Lyons, T. & Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: an update. Chem. Geol. 232, 12–32 (2006).

  • 35.

    Neubert, N., Nägler, T. F. & Böttcher, M. E. Sulfidity controls molybdenum isotope fractionation into euxinic sediments: evidence from the modern Black Sea. Geology 36, 775–778 (2008).

  • 36.

    Reinhard, C. T. et al. Proterozoic ocean redox and biogeochemical stasis. Proc. Natl Acad. Sci. USA 110, 5357–5362 (2013).

  • 37.

    Morford, J. L. & Emerson, S. The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta 63, 1735–1750 (1999).

  • 38.

    Dunk, R. M., Mills, R. A. & Jenkins, W. J. A reevaluation of the oceanic uranium budget for the Holocene. Chem. Geol. 190, 45–67 (2002).

  • 39.

    Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).

  • 40.

    Stylo, M. et al. Uranium isotopes fingerprint biotic reduction. Proc. Natl Acad. Sci. USA 112, 5619–5624 (2015).

  • 41.

    Bone, S. E., Dynes, J. J., Cliff, J. & Bargar, J. R. Uranium(IV) adsorption by natural organic matter in anoxic sediments. Proc. Natl Acad. Sci. USA 114, 711–716 (2017).

  • 42.

    McManus, J. et al. Molybdenum and uranium geochemistry in continental margin sediments: paleoproxy potential. Geochim. Cosmochim. Acta 70, 4643–4662 (2006).

  • 43.

    Scott, C. & Lyons, T. W. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies. Chem. Geol. 324–325, 19–27 (2012).

  • 44.

    Weyer, S. et al. Natural fractionation of 238U/235U. Geochim. Cosmochim. Acta 72, 345–359 (2008).

  • 45.

    Algeo, T. J. & Tribovillard, N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chem. Geol. 268, 211–225 (2009).

  • 46.

    Algeo, T. J. & Lyons, T. W. Mo-total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography 21, PA1016 (2006).

    • ADS
    • Google Scholar
  • 47.

    Nägler, T. F., Neubert, N., Böttcher, M. E., Dellwig, O. & Schnetger, B. Molybdenum isotope fractionation in pelagic euxinia: Evidence from the modern Black and Baltic Seas. Chem. Geol. 289, 1–11 (2011).

  • 48.

    Romaniello, S. J., Herrmann, A. D. & Anbar, A. D. Uranium concentrations and 238U/235U isotope ratios in modern carbonates from the Bahamas: assessing a novel paleoredox proxy. Chem. Geol. 362, 305–316 (2013).

  • 49.

    Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 11, Q03004 (2010).

  • 50.

    Ostrander, C. M., Owens, J. D. & Nielsen, S. G. Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic anoxic event (OAE-2: 94 Ma). Sci. Adv. 3, e1701020 (2017).

  • 51.

    Zhang, F. et al. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction. Sci. Adv. 4, e1602921 (2018).

  • 52.

    White, D. A., Elrick, M., Romaniello, S. & Zhang, F. Global seawater redox trends during the Late Devonian mass extinction detected using U isotopes of marine limestones. Earth Planet. Sci. Lett. 503, 68–77 (2018).

  • 53.

    Wang, G., Zhan, R. & Percival, I. G. The end-Ordovician mass extinction: a single-pulse event? Earth-Sci. Rev. 192, 15–33 (2019).

  • 54.

    Wang, Y. et al. Stratigraphic sequence and sedimentary characteristics of lower Silurian Longmaxi formation in the Sichuan Basin and its peripheral areas. Nat. Gas. Ind. 35, 12–21 (2015).

    • Google Scholar
  • 55.

    Mustafa, K. A., Sephton, M. A., Watson, J. S., Spathopoulos, F. & Krzywiec, P. Organic geochemical characteristics of black shales across the Ordovician-Silurian boundary in the Holy Cross Mountains, central Poland. Mar. Pet. Geol. 66, 1042–1055 (2015).

  • 56.

    Meyer, K. M. & Kump, L. R. Oceanic euxinia in Earth history: causes and consequences. Annu. Rev. Earth Planet. Sci. 36, 251–288 (2008).

  • 57.

    Lu, W. et al. Late inception of a resiliently oxygenated upper ocean. Science 361, 174–177 (2018).

  • 58.

    Krause, A. J. et al. Stepwise oxygenation of the Paleozoic atmosphere. Nat. Commun. 9, 1–10 (2018).

  • 59.

    Meyer, K. M., Ridgwell, A. & Payne, J. L. The influence of the biological pump on ocean chemistry: implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems. Geobiology 14, 207–219 (2016).

  • 60.

    Pohl, A., Donnadieu, Y., Le Hir, G., Buoncristiani, J.-F. & Vennin, E. Effect of the Ordovician paleogeography on the (in)stability of the climate. Clim. Discuss. 10, 2767–2804 (2014).

    • Article
    • Google Scholar
  • 61.

    Middelburg, J. J., Soetaert, K., Herman, P. M. J. & Heip, C. H. R. Denitrification in marine sediments: a model study. Glob. Biogeochem. Cycles 10, 661–673 (1996).

  • 62.

    Menard, H. W. & Smith, S. M. Hypsometry of ocean basin provinces. J. Geophys. Res. 71, 4305–4325 (1966).

  • 63.

    Soetaert, K., Petzoldt, T. & Setzer, R. W. Solving differential equations in R: package deSolve. J. Stat. Softw. 33, 1–25 (2010).

    • Google Scholar
  • 64.

    Soetaert, K. & Petzoldt, T. Inverse modelling, sensitivity and Monte Carlo analysis in R using package FME. J. Stat. Softw. 33, 1–28 (2010).

    • Google Scholar
  • 65.

    Poulton, S. W. & Canfield, D. E. Development of a sequential extraction procedure for iron: Implications for iron partitioning in continentally derived particulates. Chem. Geol. 214, 209–221 (2005).

  • 66.

    Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M. & Berner, R. A. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149–155 (1986).

  • 67.

    Wang, X., Planavsky, N. J., Reinhard, C. T., Hein, J. R. & Johnson, T. M. A Cenozoic seawater redox record derived from 238U/235U in ferromanganese crusts. Am. J. Sci. 316, 64–83 (2016).

  • 68.

    Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a billion years before the great oxidation event. Nat. Geosci. 7, 283–286 (2014).

  • 69.

    Cole, D. B., Zhang, S. & Planavsky, N. J. A new estimate of detrital redox-sensitive metal concentrations and variability in fluxes to marine sediments. Geochim. Cosmochim. Acta 215, 337–353 (2017).

  • 70.

    Nägler, T. F. et al. Proposal for an international molybdenum isotope measurement standard and data representation. Geostand. Geoanalytical Res. 38, 149–151 (2014).

    • Google Scholar
  • 71.

    Noordmann, J. et al. Uranium and molybdenum isotope systematics in modern euxinic basins: case studies from the central Baltic Sea and the Kyllaren fjord (Norway). Chem. Geol. 396, 182–195 (2015).

  • 72.

    Rudnick, R. L. & Gao, S. Composition of the Continental Crust. in Treatise on Geochemistry: Second Edition 4, 1–51 (Elsevier, 2014).

  • 73.

    Voegelin, A. R., Pettke, T., Greber, N. D., von Niederhäusern, B. & Nägler, T. F. Magma differentiation fractionates Mo isotope ratios: Evidence from the Kos Plateau Tuff (Aegean Arc). Lithos 190–191, 440–448 (2014).

  • 74.

    Wickson, S. High-Resolution Carbon Isotope Stratigraphy of the Ordovician-Silurian Boundary on Anticosti Island, Quebec: regional and Global Implications. (University of Ottowa, 2011).

  • 75.

    Scott, C. et al. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452, 456–459 (2008).

  • 76.

    Andersen, M. B. et al. Closing in on the marine 238U/235U budget. Chem. Geol. 420, 11–22 (2016).

  • 77.

    Brown, S. T., Basu, A., Ding, X., Christensen, J. N. & DePaolo, D. J. Uranium isotope fractionation by abiotic reductive precipitation. Proc. Natl Acad. Sci. USA 115, 8688–8693 (2018).

  • 78.

    Dahl, T. W. et al. Reorganisation of Earth’s biogeochemical cycles briefly oxygenated the oceans 520 Myr ago. Geochemical Perspect. Lett. 210–220, https://doi.org/10.7185/geochemlet.1724 (2017).

  • 79.

    Wei, G. Y. et al. Marine redox fluctuation as a potential trigger for the Cambrian explosion. Geology 46, 587–590 (2018).

  • 80.

    Tissot, F. L. H. & Dauphas, N. Uranium isotopic compositions of the crust and ocean: Age corrections, U budget and global extent of modern anoxia. Geochim. Cosmochim. Acta 167, 113–143 (2015).


  • Source: Ecology - nature.com

    Energy economics class inspires students to pursue clean energy careers

    Shut down of the South American summer monsoon during the penultimate glacial