in

Accounting for detection unveils the intricacy of wild boar and rabbit co-occurrence patterns in a Mediterranean landscape

  • 1.

    Rich, L. N., Miller, D. A. W., Robinson, H. S., Mcnutt, J. W. & Kelly, M. J. Using camera trapping and hierarchical occupancy modelling to evaluate the spatial ecology of an African mammal community. J. Appl. Ecol. 53, 1225–1235 (2016).

    • Article
    • Google Scholar
  • 2.

    Haynes, T. B. et al. Occupancy of yellow-billed and Pacific loons: evidence for interspecific competition and habitat mediated co-occurrence. J. Avian Biol. 45, 296–304 (2014).

    • Article
    • Google Scholar
  • 3.

    Curveira-Santos, G., Marques, T. A., Björklund, M. & Santos-Reis, M. Mediterranean mesocarnivores in spatially structured managed landscapes: community organisation in time and space. Agric. Ecosyst. Environ 237, 280–289 (2017).

    • Article
    • Google Scholar
  • 4.

    Murphy, A., Kelly, M. J., Karpanty, S. M., Andrianjakarivelo, V. & Farris, Z. J. Using camera traps to investigate spatial co-occurrence between exotic predators and native prey species: a case study from northeastern Madagascar. J. Zool. 307, 264–273 (2019).

    • Article
    • Google Scholar
  • 5.

    Farris, Z. J., Kelly, M. J., Karpanty, S. & Ratelolahy, F. Patterns of spatial co-occurrence among native and exotic carnivores in north-eastern Madagascar. Anim. Conserv. 19, 189–198 (2016).

    • Article
    • Google Scholar
  • 6.

    Santulli, G., Palazón, S., Melero, Y., Gosálbez, J. & Lambin, X. Multi-season occupancy analysis reveals large scale competitive exclusion of the critically endangered European mink by the invasive non-native American mink in Spain. Biol. Conserv. 176, 21–29 (2014).

    • Article
    • Google Scholar
  • 7.

    Barner, A. K., Coblentz, K. E., Hacker, S. D. & Menge, B. A. Fundamental contradictions among observational and experimental estimates of non-trophic species interactions. Ecology 99, 557–566 (2018).

  • 8.

    Sivy, K. J., Pozzanghera, C. B., Grace, J. B. & Prugh, L. R. Fatal attraction? Intraguild facilitation and suppression among predators. Am. Nat. 190, 663–679 (2017).

  • 9.

    Yackulic, C. B. et al. The roles of competition and habitat in the dynamics of populations and species distributions. Ecology 95, 265–279 (2014).

  • 10.

    Steinmetz, R., Seuaturien, N. & Chutipong, W. Tigers, leopards, and dholes in a half-empty forest: assessing species interactions in a guild of threatened carnivores. Biol. Conserv. 163, 68–78 (2013).

    • Article
    • Google Scholar
  • 11.

    Sagarin, R. & Pauchard, A. Observational approaches in ecology open new ground in a changing world. Front. Ecol. Environ. 8, 379–386 (2010).

    • Article
    • Google Scholar
  • 12.

    Mackenzie, D. I., Bailey, L. L. & Nichols, J. D. Investigating species co-occurrence patterns when species are detected imperfectly. J. Anim. Ecol. 73, 546–555 (2004).

    • Article
    • Google Scholar
  • 13.

    Cruz, J., Sarmento, P. & White, P. C. L. Influence of exotic forest plantations on occupancy and co-occurrence patterns in a mediterranean carnivore guild. J. Mammal 96, 854–865 (2015).

    • Article
    • Google Scholar
  • 14.

    Robinson, Q. H., Bustos, D. & Roemer, G. W. The application of occupancy modeling to evaluate intraguild predation in a model carnivore system. Ecology 95, 3112–3123 (2014).

    • Article
    • Google Scholar
  • 15.

    Richmond, O. M. W., Hines, J. E. & Beissinger, S. R. Two-species occupancy models: a new paramaterization applied to co-occurence of secretive rails. Ecol. Appl. 20, 2036–2046 (2010).

  • 16.

    Wang, Y., Allen, M. L. & Wilmers, C. C. Mesopredator spatial and temporal responses to large predators and human development in the Santa Cruz Mountains of California. Biol. Conserv. 190, 23–33 (2015).

    • Article
    • Google Scholar
  • 17.

    Bailey, L. L., Reid, J. A., Forsman, E. D. & Nichols, J. D. Modeling co-occurrence of northern spotted and barred owls: accounting for detection probability differences. Biol. Conserv. 142, 2983–2989 (2009).

    • Article
    • Google Scholar
  • 18.

    Cabezas-Diaz, S., Virgós, E., Mangas, J. G. & Lozano, J. The presence of a ‘competitor pit effect’ compromises wild rabbit (Oryctolagus cuniculus) conservation. Anim. Biol. 61, 319–334 (2011).

    • Article
    • Google Scholar
  • 19.

    Lozano, J., Virgós, E., Cabezas-Díaz, S. & Mangas, J. G. Increase of large game species in Mediterranean areas: is the European wildcat (Felis silvestris) facing a new threat? Biol. Conserv. 138, 321–329 (2007).

    • Article
    • Google Scholar
  • 20.

    Carpio, A. J., Guerrero-Casado, J., Ruiz-Aizpurua, L., Vicente, J. & Tortosa, F. S. The high abundance of wild ungulates in a Mediterranean region: is this compatible with the European rabbit? Wildlife Biol. 20, 161–166 (2014).

    • Article
    • Google Scholar
  • 21.

    Massei, G. et al. Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag. Sci. 71, 492–500 (2015).

  • 22.

    Bosch, J. et al. Distribution, abundance and density of the wild boar on the Iberian Peninsula, based on the CORINE program and hunting statistics. Folia Zool. 61, 138–151 (2012).

    • Article
    • Google Scholar
  • 23.

    Dardaillon, M. Seasonal variations in habitat selection and spatial distribution of wild boar (Sus scrofa) in the Camargue, Southern France. Behav. Processes 13, 251–268 (1986).

  • 24.

    Macci, C. et al. Effects of wild boar (Sus scrofa) grazing on soil properties in Mediterranean environment. Catena 98, 79–86 (2012).

  • 25.

    Massei, G. & Genov, P. The environmental impact of wild boar. Galemys 16, 135–145 (2004).

    • Google Scholar
  • 26.

    Moreno, S., Villafuerte, R. & Delibes, M. Cover is safe during the day but dangerous at night: the use of vegetation by European wild rabbits. Can. J. Zool. 74, 1656–1660 (1996).

    • Article
    • Google Scholar
  • 27.

    Carpio, A. J., Oteros, J., Lora, Á. & Tortosa, F. S. Effects of the overabundance of wild ungulates on natural grassland in Southern Spain. Agrofor. Syst 89, 637–644 (2015).

    • Article
    • Google Scholar
  • 28.

    Schley, L. & Roper, T. J. Diet of wild boar Sus scrofa in Western Europe, with particular reference to consumption of agricultural crops. Mamm. Rev. 33, 43–56 (2003).

    • Google Scholar
  • 29.

    Delibes-Mateos, M., Ferreras, P. & Villafuerte, R. European rabbit population trends and associated factors: a review of the situation in the Iberian Peninsula. Mamm. Rev 39, 124–140 (2009).

    • Article
    • Google Scholar
  • 30.

    Delibes-Mateos, M. et al. A large-scale assessment of European rabbit damage to agriculture in Spain. Pest Manag. Sci. 74, 111–119 (2017).

  • 31.

    Ferrand, N. & Branco, M. The evolutionary history of the European rabbit (Oryctolagus cuniculus): major patterns of population differentiation and geographic expansion inferred from protein polymorphism in Phylogeography of Southern European Refugia (eds. Weiss, S. & Ferrand, N.) 207–235 (Springer, 2007).

  • 32.

    Delibes-Mateos, M., Redpath, S. M., Angulo, E., Ferreras, P. & Villafuerte, R. Rabbits as a keystone species in southern Europe. Biol. Conserv. 37, 149–156 (2007).

    • Article
    • Google Scholar
  • 33.

    Calvete, C., Estrada, R., Villafuerte, R., Osácar, J. J. & Lucientes, J. Epidemiology of viral haemorrhagic disease and myxomatosis in a free-living population of wild rabbits. Vet. Rec. 150, 776–782 (2002).

  • 34.

    Ferreira, C. & Delibes-Mateos, M. Wild rabbit management in the Iberian Peninsula: state of the art and future perspectives for Iberian lynx conservation. Wildl. Biol. Pract 6, 48–66 (2010).

    • Article
    • Google Scholar
  • 35.

    Trout, R. C. & Tittensor, A. M. Can predators regulate wild rabbit Oryctolagus cuniculus population density in England and Wales? Mamm. Rev 19, 153–173 (1989).

    • Google Scholar
  • 36.

    Angulo, E. & Villafuerte, R. Modelling hunting strategies for the conservation of wild rabbit populations. Biol. Conserv. 115, 291–301 (2004).

    • Article
    • Google Scholar
  • 37.

    Guerrero-Casado, J., Carpio, A. J. & Tortosa, F. S. Recent negative trends of wild rabbit populations in southern Spain after the arrival of the new variant of the rabbit hemorrhagic disease virus RHDV2. Mamm. Biol. 81, 361–364 (2016).

    • Article
    • Google Scholar
  • 38.

    Queiroz, A. I. et al. Oryctolagus cuniculus Coelho-bravo in Livro Vermelho dos Vertebrados de Portugal (eds. Cabral, M. et al.) 279–280 (Instituto da Conservação da Natureza/Assírio & Alvim, 2006).

  • 39.

    Villafuerte, R. & Delibes-Mateos, M. El conejo in Atlas y Libro Rojo de los Mamíferos Terrestres de España 490–491 (2007).

  • 40.

    Villafuerte, R. & Delibes-Mateos, M. Oryctolagus cuniculus. The IUCN Red List of Threatened Species 2019: e.T41291A45189779 (2019). Available at: https://www.iucnredlist.org/species/41291/45189779. (Accessed: 11th December 2019).

  • 41.

    Lopes, F. J. V. & Borges, J. M. F. Wild boar in Portugal. Galemys 16, 243–251 (2004).

    • Google Scholar
  • 42.

    Gonçalves, P., Alcobia, S., Simões, L. & Santos-Reis, M. Effects of management options on mammal richness in a Mediterranean agro-silvo-pastoral system. Agrofor. Syst 85, 383–395 (2011).

    • Article
    • Google Scholar
  • 43.

    Companhia das Lezírias. Resumo do Plano de Gestão Florestal. (2016).

  • 44.

    MacKenzie, D. I. et al. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurence (ed. Maragioglio, N.) 1–313 (Elsevier, 2006).

  • 45.

    Mackenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255 (2002).

    • Article
    • Google Scholar
  • 46.

    Beltran, J. Temporal abundace pattern of the wild rabbit in Doñana, SW Spain. Mammalia 55, 591–600 (1991).

    • Article
    • Google Scholar
  • 47.

    Massei, G., Genov, P. V., Staines, B. W. & Gorman, M. L. Factors influencing home range and activity of wild boar. Zool. Soc. London 242, 411–423 (1997).

    • Article
    • Google Scholar
  • 48.

    Guerrero-Casado, J. et al. Assessment of the suitability of latrine counts as an indirect method by which to estimate the abundance of European rabbit populations at high and low abundance. Eur. J. Wildl. Res. 66, 2–5 (2020).

    • Article
    • Google Scholar
  • 49.

    Acevedo, P., Escudero, M. A., Muñoz, R. & Gortázar, C. Factors affecting wild boar abundance across an environmental gradient in Spain. Acta Theriol. (Warsz) 51, 327–336 (2006).

    • Article
    • Google Scholar
  • 50.

    Lombardi, L., Fernández, N. & Moreno, S. Habitat use and spatial behaviour in the European rabbit in three Mediterranean environments. Basic Appl. Ecol. 8, 453–463 (2007).

    • Article
    • Google Scholar
  • 51.

    Moser, B. W. & Witmer, G. W. The effects of elk and cattle foraging on the vegetation, birds, and small mammals of the Bridge Creek Wildlife Area, Oregon. Int. Biodeterior. Biodegrad. 45, 151–157 (2000).

    • Article
    • Google Scholar
  • 52.

    Fernández, N. Spatial patterns in European rabbit abundance after a population collapse. Landsc. Ecol 20, 897–910 (2005).

    • Article
    • Google Scholar
  • 53.

    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.). 36,, 027–046 (2013).

    • Article
    • Google Scholar
  • 54.

    Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2010).

    • Article
    • Google Scholar
  • 55.

    Mackenzie, D. I. & Hines, J. E. Model averaging and individual covariates. Phidot Forum (2003). Available at: http://www.phidot.org/forum/viewtopic.php?f=1&t=996&p=2620&hilit=model+average+betas#p2620. (Accessed: 18th July 2018).

  • 56.

    MacKenzie, D. I. & Bailey, L. L. Assessing the fit of site-occupancy models. J. Agric. Biol. Environ. Stat. 9, 300–318 (2004).

    • Article
    • Google Scholar
  • 57.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 1–488 (Springer-Verlag, 2002).

  • 58.

    Anderson, D. R. Multimodel Inference in Model Based Inference in the Life Sciences: A Primer on Evidence 105–124 (Springer Science & Business Media, 2008).

  • 59.

    Fiske, I. & Chandler, R. Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Softw. 43, 1–23 (2011).

    • Article
    • Google Scholar
  • 60.

    Hines, J. E. Program PRESENCE 14.3. Software to estimate patch occupancy and related parameters. (2016).

  • 61.

    Monclús, R. & de Miguel, F. J. Distribución espacial de las letrinas de conejo (Oryctolagus cuniculus) en ele monte de Valdelatas (Madrid). Galemys 15, 157–165 (2003).

    • Google Scholar
  • 62.

    Monclús, R., Arroyo, M., Valencia, A. & De Miguel, F. J. Red foxes (Vulpes vulpes) use rabbit (Oryctolagus cuniculus) scent marks as territorial marking sites. J. Ethol. 27, 153–156 (2009).

    • Article
    • Google Scholar
  • 63.

    Cheng, E. & Ritchie, M. E. Impacts of simulated livestock grazing on Utah prairie dogs (Cynomys parvidens) in a low productivity ecosystem. Oecologia 147, 546–555 (2005).

  • 64.

    Thines, N. J. S., Shipley, L. A. & Sayler, R. D. Effects of cattle grazing on ecology and habitat of Columbia Basin pygmy rabbits (Brachylagus idahoensis). Biol. Conserv. 119, 525–534 (2004).

    • Article
    • Google Scholar
  • 65.

    Kellner, K. F. & Swihart, R. K. Accounting for imperfect detection in ecology: A quantitative review. PLoS One 9, (2014).

  • 66.

    Olson, C. A., Beard, K. H., Koons, D. N. & Pitt, W. C. Detection probabilities of two introduced frogs in Hawaii: implications for assessing non-native species distributions. Biol. Invasions 14, 889–900 (2012).

    • Article
    • Google Scholar
  • 67.

    Barrio, I. C., Bueno, C. G., Villafuerte, R. & Tortosa, F. S. Rabbits, weeds and crops: Can agricultural intensification promote wildlife conflicts in semiarid agro-ecosystems? J. Arid Environ. 90, 1–4 (2013).

  • 68.

    Calvete, C., Estrada, R., Angulo, E. & Cabezas-Ruiz, S. Habitat factors related to wild rabbit conservation in an agricultural landscape. Landsc. Ecol 19, 531–542 (2004).

    • Article
    • Google Scholar
  • 69.

    Palomares, F., Rodríguez, A., Revilla, E., Vicente López-Bao, J. & Calzada, J. Assessment of the conservation efforts to prevent extinction of the Iberian lynx. Conserv. Biol 25, 4–8 (2010).


  • Source: Ecology - nature.com

    Local food crop production can fulfil demand for less than one-third of the population

    FiCli, the Fish and Climate Change Database, informs climate adaptation and management for freshwater fishes