in

Forecasting mangrove ecosystem degradation utilizing quantifiable eco-physiological resilience -A study from Indian Sundarbans

  • 1.

    Sarker, S. K., Reeve, R., Thompson, J., Paul, N. K. & Matthiopoulos, J. Are we failing to protect threatened mangroves in the Sundarbans world heritage ecosystem? Scientific Reports 6, 1–12, https://doi.org/10.1038/srep21234 (2016).

  • 2.

    Cavanaugh, K. C. et al. Integrating physiological threshold experiments with climate modeling to project mangrove species’ range expansion. Global Change Biology 21, 1928–1938, https://doi.org/10.1111/gcb.12843 (2015).

  • 3.

    Chowdhury, R. et al. Effects of nutrient limitation, salinity increase, and associated stressors on mangrove forest cover, structure, and zonation across Indian Sundarbans. Hydrobiologia 842, 191–217, https://doi.org/10.1007/s10750-019-04036-9 (2019).

  • 4.

    Kathiresan, K. Mangrove forests of India. Current Science 114, 976–981, https://doi.org/10.18520/cs/v114/i05/976-981 (2018).

    • Article
    • Google Scholar
  • 5.

    Dahdouh-Guebas, F. et al. Transitions in ancient inland freshwater resource management in Sri Lanka affect biota and human populations in and around coastal lagoons. Current Biology 15, 579–586, https://doi.org/10.1016/j.cub.2005.01.053 (2005).

  • 6.

    Holling, C. S. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics 4, 1–23, https://doi.org/10.1146/annurev.es.04.110173.000245 (1973).

    • Article
    • Google Scholar
  • 7.

    Gunderson, L. H. Ecological resilience: in theory and application. Annual Review of Ecology and Systematics 31, 425–439, https://doi.org/10.1146/annurev.ecolsys.31.1.425 (2000).

    • Article
    • Google Scholar
  • 8.

    Fischer, J. et al. Integrating resilience thinking and optimisation for conservation. Trends in Ecology and Evolution 24, 549–554, https://doi.org/10.1016/j.tree.2009.03.020 (2009).

  • 9.

    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–96 (2001).

  • 10.

    Dent, C. L., Cumming, G. S. & Carpenter, S. R. Multiple states in river and lake ecosystems. Philosophical transactions of the Royal Society of London B 357, 635–645, https://doi.org/10.1098/rstb.2001.0991 (2002).

    • Article
    • Google Scholar
  • 11.

    Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology and Evolution 18, 648–656, https://doi.org/10.1016/j.tree.2003.09.002 (2003).

    • Article
    • Google Scholar
  • 12.

    Petraitis, P. S. & Dudgeon, S. R. Detection of alternative stable states in marine communities. Journal of Experimental Marine Biology and Ecology 300, 343–371, https://doi.org/10.1016/j.jembe.2003.12.026 (2004).

    • Article
    • Google Scholar
  • 13.

    Gutschick, V. P. & BassiriRad, H. Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytologist 160, 21–42, https://doi.org/10.1046/j.1469-8137.2003.00866.x (2003).

    • Article
    • Google Scholar
  • 14.

    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecological Modelling 135, 147–186 (2000).

    • Article
    • Google Scholar
  • 15.

    Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters 12, 334–350, https://doi.org/10.1111/j.1461-0248.2008.01277.x (2009).

  • 16.

    Kearney, M. R., Wintle, B. A. & Porter, W. P. Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conservation Letters 3, 203–213, https://doi.org/10.1111/j.1755-263X.2010.00097.x (2010).

    • Article
    • Google Scholar
  • 17.

    Kotta, J. et al. Integrating experimental and distribution data to predict future species patterns. Scientific Reports 9, https://doi.org/10.1038/s41598-018-38416-3 (2019).

  • 18.

    Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, https://doi.org/10.1126/science.aad8466 (2016).

  • 19.

    Martínez, B., Arenas, F., Trilla, A., Viejo, R. M. & Carreño, F. Combining physiological threshold knowledge to species distribution models is key to improving forecasts of the future niche for macroalgae. Global Change Biology 21, 1422–1433 (2015).

  • 20.

    Twilley, R. W., Lugo, A. E. & Patterson-Zucca, C. Litter production and turnover in basin mangrove forests in southwest Florida. Ecology 67, 670–683, https://doi.org/10.2307/1937691 (1986).

    • Article
    • Google Scholar
  • 21.

    Alongi, D. M. The role of bacteria in nutrient recycling in tropical mangrove and other coastal benthic ecosystems. Hydrobiologia 285, 19–32, https://doi.org/10.1007/bf00005650 (1994).

  • 22.

    Kristensen, E., Bouillon, S., Dittmar, T. & Marchand, C. Organic carbon dynamics in mangrove ecosystems: a review. Aquatic Botany 89, 201–219, https://doi.org/10.1016/j.aquabot.2007.12.005 (2008).

  • 23.

    Krauss, K. W. et al. Environmental drivers in mangrove establishment and early development: a review. Aquatic Botany 89, 105–127, https://doi.org/10.1016/j.aquabot.2007.12.014 (2008).

    • Article
    • Google Scholar
  • 24.

    Freeman, C., Ostle, N. & Kang, H. An enzymic ‘latch’ on a global carbon store. Nature 409, 149, https://doi.org/10.1038/35051650 (2001).

  • 25.

    Nickerson, N. H. & Thibodeau, F. R. Association between pore water sulphide concentrations and the distribution of mangroves. Biogeochemistry 1, 183–192, https://doi.org/10.1007/bf02185041 (1985).

    • Article
    • Google Scholar
  • 26.

    Flowers, T. J., Munns, R. & Colmer, T. D. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of Botany 115, 419–431, https://doi.org/10.1093/aob/mcu217 (2015).

  • 27.

    Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651–681, https://doi.org/10.1146/annurev.arplant.59.032607.092911 (2008).

  • 28.

    Slama, I., Abdelly, C., Bouchereau, A., Flowers, T. & Savouré, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany 115, 433–447, https://doi.org/10.1093/aob/mcu239 (2015).

  • 29.

    Ashraf, M. & Harris, P. J. C. Potential biochemical indicators of salinity tolerance in plants. Plant Science 166, 3–16, https://doi.org/10.1016/j.plantsci.2003.10.024 (2004).

  • 30.

    Joshi, G. V., Sontakke, S., Bhosale, L. & Waghmode, A. P. Photosynthesis and photorespiration in mangroves. In:TeasH.J.(eds)Physiology and management of mangroves. Tasks for vegetation science 9,1-14, Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6572-0_1 (1984).

  • 31.

    Cheeseman, J. M., Herendeen, L. B., Cheeseman, A. T. & Clough, B. F. Photosynthesis and photoprotection in mangroves under field conditions. Plant, CellEnvironment 20, 579–588, https://doi.org/10.1111/j.1365-3040.1997.00096.x (1997).

  • 32.

    Naskar, K. & Mandal, R. Ecology and biodiversity of Indian Sundarban. New Delhi:Daya publishing house (1999).

  • 33.

    UNEP (2014). The Importance of Mangroves to People: A Call toAction. van Bochove, J., Sullivan, E., Nakamura, T. (Eds). United Nations Environment Programme World Conservation Monitoring Centre, Cambridge. 128 (2014).

  • 34.

    Amir, A. A. Mitigate risk for Malaysia’s mangroves. Science 359, 1342–1343, https://doi.org/10.1126/science.aas9139 (2018).

  • 35.

    Nurkin, B. Degradation of mangrove forests in South Sulawesi, Indonesia. Hydrobiologia 285, 271–276, https://doi.org/10.1007/bf00005673 (1994).

    • Article
    • Google Scholar
  • 36.

    Lacerda, L. D. & Marins, R. V. River damming and changes in mangrove distribution. ISME /GLOMIS Electronic Journal 2, 1–4 (2002).

    • Google Scholar
  • 37.

    Primavera, J. H. Development and conservation of Philippine mangroves: institutional issues. Ecological Economics 35, 91–106 (2000).

    • Article
    • Google Scholar
  • 38.

    Katupotha, K. N. J. Degradation of mangrove swamps in Sri Lanka. Proceedings of the Seventh Annual Forestry and Environment Symposium. University of Sri Jayewardenepura, Sri Lanka, https://doi.org/10.31357/fesympo.v0i0.1603.g773 (2001).

  • 39.

    Ferreira, A. C. & Lacerda, L. D. Degradation and conservation of Brazilian mangroves, status and perspectives. Ocean &Coastal Management 125, 38–46, https://doi.org/10.1016/j.ocecoaman.2016.03.011 (2016).

    • Article
    • Google Scholar
  • 40.

    Shah, A. A., Ibrahim, K. & Jusoff, K. Degradation of Indus Delta Mangroves in Pakistan. International Journal of Geology 1, 27–34 (2007).

    • Google Scholar
  • 41.

    Meng, X., Xia, P., Li, Z. & Meng, D. Mangrove degradation and response to anthropogenic disturbance in Maowei Sea (SW China) since 1926 AD: Mangrove-derived OM and pollen. Organic Geochemistry 98, 166–175, https://doi.org/10.1016/j.orggeochem.2016.06.001 (2016).

  • 42.

    Dorich, R. A. & Nelson, D. W. Direct colorimetric measurement of ammonium in potassium chloride extracts of soils. Soil Science Society of America Journal 47, 833–836, https://doi.org/10.2136/sssaj1983.03615995004700040042x (1983).

  • 43.

    Solórzano, L. Determination of ammonia in natural waters by the Phenolhypochlorite method. Limnology and Oceanography 14, 799–801, https://doi.org/10.4319/lo.1969.14.5.0799 (1969).

  • 44.

    Park, G., Oh, H. & Ahn, S. Improvement of the ammonia analysis by the phenate method in water and wastewater. Bulletin of the Korean Chemical Society 30, 2032–2038, https://doi.org/10.5012/bkcs.2009.30.9.2032 (2009).

  • 45.

    Datta, N. P., Khera, M. S. & Saini, T. R. A Rapid Colorimeteric Procedure for the Determination of the Organic Carbon in the Soils. Journal of the Indian Society of Soil Science 10, 67–74 (1962).

    • CAS
    • Google Scholar
  • 46.

    McIntosh, J. L. Brayand Morgan soil extractants modified for testing acid soils from different parent materials. Agronomy Journal 61, 259–265, https://doi.org/10.2134/agronj1969.00021962006100020025x (1969).

  • 47.

    Krishnaswamy, U., Muthusamy, M. & Perumalsamy, L. Studies on the efficiency of the removal of phosphate using bacterial consortium for the biotreatment of phosphate wastewater. European Journal of Applied Sciences 1, 6–15 (2009).

    • Google Scholar
  • 48.

    Bach, C. E. et al. Measuring phenol oxidase and peroxidase activities with pyrogallol, l-DOPA, and ABTS: Effect of assay conditions and soil type. Soil Biology & Biochemistry 67, 183–191, https://doi.org/10.1016/j.soilbio.2013.08.022 (2013).

  • 49.

    Gallo, M., Amonette, R., Lauber, C., Sinsabaugh, R. L. & Zak, D. R. Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils. Microbial Ecology 48, 218–229, https://doi.org/10.1007/s00248-003-9001-x (2004).

  • 50.

    EnvironmentAgency, UK. The determination of easily liberated sulphide in soils and similar matrices. Methods for the Examination of Waters and Associated Materials, 10–17, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/316780/Sulphide-228.pdf (2010).

  • 51.

    Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant and Soil 39, 205–207, https://doi.org/10.1007/bf00018060 (1973).

  • 52.

    Grieve, C. M. & Grattan, S. R. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil 70, 303–307, https://doi.org/10.1007/bf02374789 (1983).

  • 53.

    Sa’nchez, J. Colorimetric assay of alditols in complex biological samples. Journal of Agricultural and Food Chemistry 46, 157–160, https://doi.org/10.1021/jf970619t (1998).

    • Article
    • Google Scholar
  • 54.

    DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28, 350–356, https://doi.org/10.1021/ac60111a017 (1956).

  • 55.

    Darbre, A. & Norris, F. W. Vitamins in germination. Determination of free and combined inositol in germinating oats. Biochemical Journal 64, 441–446, https://doi.org/10.1042/bj0640441 (1956).

  • 56.

    Gaitonde, M. K. & Griffiths, M. A spectrophotometric method for the determination of microquantities of free inositol in biological material. Analytical Biochemistry 15, 532–535, https://doi.org/10.1016/0003-2697(66)90116-3 (1966).

  • 57.

    Moore, S. & Stein, W. H. Photometric ninhydrin method for use in the chromatography of amino acids. Journal of Biological Chemistry 176, 367–388 (1948).

  • 58.

    Garland, S., Goheen, S., Donald, P., McDonald, L. & Campbell, J. Application of derivatization gas chromatography/mass spectrometry for the identification and quantitation of pinitol in plant roots. Analytical Letters 42, 2096–2105, https://doi.org/10.1080/00032710903082531 (2009).

  • 59.

    McDonald, L. W. IV, Goheen, S. C., Donald, P. A. & Campbell, J. A. Identification and quantitation of various inositols and O-methylinositols present in plant roots related to soybean cyst nematode host status. Nematropica 42, 1–8 (2012).

    • Google Scholar
  • 60.

    Smith, A. M., Hylton, C. M. & Rawsthorne, S. Interference by Phosphatases in the Spectrophotometric Assay for Phosphoenolpyruvate Carboxylase. Plant Physiology 89, 982–985, https://doi.org/10.1104/pp.89.3.982 (1989).

  • 61.

    Du, Y.-C. et al. Animproved spectrophotometric determination of the activity of ribulose 1,5-bisphosphate carboxylase. Japanese Journal of Crop Science 65, 714–721, https://doi.org/10.1626/jcs.65.714 (1996).

  • 62.

    Lichtenthaler, H. K. & Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Current Protocols in Food Analytical Chemistry, https://doi.org/10.1002/0471142913.faf0403s01 (2001).

  • 63.

    Beyer, W. F. Jr & Fridovich, I. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry 161, 559–566, https://doi.org/10.1016/0003-2697(87)90489-1 (1987).

  • 64.

    Beauchamp, C. & Fridovich, I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44, 276–287, https://doi.org/10.1016/0003-2697(71)90370-8 (1971).

  • 65.

    Wang, R. et al. Anatomical and Physiological Plasticity in Leymus chinensis (Poaceae) along Large-Scale Longitudinal Gradient in Northeast China. PLoS ONE 6, e26209, https://doi.org/10.1371/journal.pone.0026209 (2011).

  • 66.

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−Ct method. Methods 25, 402–408, https://doi.org/10.1006/meth.2001.1262 (2001).

  • 67.

    Das, G. K. Estuarine morphodynamics of the Sunderbans. Springer International Publishing Switzerland, https://doi.org/10.1007/978-3-319-11343-2 (2015).


  • Source: Ecology - nature.com

    Accounting for detection unveils the intricacy of wild boar and rabbit co-occurrence patterns in a Mediterranean landscape

    Impacts of Saharan Dust Intrusions on Bacterial Communities of the Low Troposphere