in

Expected spatial patterns of alien woody plants in South Africa’s protected areas under current scenario of climate change

  • 1.

    Akhter, S. et al. Habitat distribution modelling to identify areas of high conservation value under climate change for Mangifera sylvatica Roxb. of Bangladesh. Land Use Policy 60, 223–232 (2017).

    • Article
    • Google Scholar
  • 2.

    Bosso, L. et al. Loss of potential bat habitat following a severe wildfire: a model-based rapid assessment. Int J. Wildland Fire 27, 756–769 (2018).

    • Article
    • Google Scholar
  • 3.

    Estifanos, T. K., Polyakov, M., Pandit, R., Hailu, A. & Burton, M. Managing conflicts between local land use and the protection of the Ethiopian wolf: Residents’ preferences for conservation program design features. Ecol Econ 169, 106511 (2020).

    • Article
    • Google Scholar
  • 4.

    Heywood, V. H. Conserving plants within and beyond protected areas – still problematic and future uncertain. Plant Diversity, https://doi.org/10.1016/j.pld.2018.10.001 (2018).

  • 5.

    Rodrigues, A. S. L. et al. Global gap analysis: Priority regions for expanding the global protected-area network. BioScience 54, 1092–1100 (2004).

    • Article
    • Google Scholar
  • 6.

    Foxcroft, L. C., JaroŠÍK, V., Pyšek, P., Richardson, D. M. & Rouget, M. Protected-area boundaries as filters of plant invasions. Conserv Biol 25, 400–405 (2011).

  • 7.

    Thomas, C. D. et al. Protected areas facilitate species’ range expansions. Proc. Natl. Acad. Sci. U.S.A. 109, 14063–14068 (2012).

  • 8.

    Pyšek, P., Genovesi, P., Pergl, J., Monaco, A. & Wild, J. Plant Invasions of Protected Areas in Europe: An Old Continent Facing New Problems. In L. C. Foxcroft (Ed.), Invading Nature (pp. 209–240). Dordrecht: Springer. (2013).

  • 9.

    Wan, J. Z. & Wang, C. J. Expansion risk of invasive plants in regions of high plant diversity: A global assessment using 36 species. Ecol Inform 46, 8–18 (2018).

    • Article
    • Google Scholar
  • 10.

    IPBES. Summary for policymakers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. Potts, S. G. et al. (eds.). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany, 2019. Available from, www.ipbes.net/sites/default/files/downloads/pdf/spm_deliverable_3a_pollination_20170222.pdf (2019).

  • 11.

    Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol Lett 12, 20150623 (2016).

  • 12.

    Bertolino S., Lurz, P., Bosso, L., Russo D., Di Febbraro M. Spatially-explicit models as tools for implementing effective management strategies for invasive alien mammals. Mamm Rev., https://doi.org/10.1111/mam.12185 (2020).

  • 13.

    Walther, G. R. et al. Alien species in a warmer world: Risks and opportunities. Trends Ecol Evol 24, 686–693 (2009).

  • 14.

    Willis, C. G. et al. Favorable climate change response explains non-native species’ success in Thoreau’s Woods. Plos One 5, e8878 (2010).

  • 15.

    Bezeng, S. B., Van der Bank, M., Yessoufou, K., Daru, B. H. & Davies, T. J. Climate change may reduce the spread of invasive and invading species in South Africa. Ecosphere 8, e01694, https://doi.org/10.1002/ecs2.1694 (2017).

    • Article
    • Google Scholar
  • 16.

    Richardson, D. M. et al. Accommodating scenarios of climate change and management in modelling the distribution of the invasive tree Schinus molle in South Africa. Ecography 33, 1049–1061 (2010).

    • Article
    • Google Scholar
  • 17.

    Wan, J. Z., Wang, C. J. & Yu, F. H. Risk hotspots for terrestrial plant invaders under climate change at the global scale. Environ. Earth Sci 75, 1–8 (2016).

  • 18.

    Panda, R. M., Behera, M. D. & Roy, P. S. Assessing distributions of two invasive species of contrasting habits in future climate. J Environ Manage 213, 478–488 (2018).

  • 19.

    Van Wilgen, B. W., Richardson, D. M., Le Maitre, D. C., Marais, C. & Magadlela, D. The economic consequences of alien plant invasions: examples of impacts and approaches to sustainable management in South Africa. Environ Dev Sustain 3, 145–168 (2001).

    • Article
    • Google Scholar
  • 20.

    Leung, B. et al. An ounce of prevention or a pound of cure: Bioeconomic risk analysis of invasive species. Proc R Soc Lond B Biol Sci 269, 2407–2413, https://doi.org/10.1098/rspb.2002.2179 (2002).

    • Article
    • Google Scholar
  • 21.

    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol Lett 8, 993–1009 (2005).

    • Article
    • Google Scholar
  • 22.

    Pearman, P. B. et al. Prediction of plant species distributions across six millennia. Ecol Lett 11, 357–369 (2008).

  • 23.

    Nogués-Bravo, D. Predicting the past distribution of species climatic niches. Glob. Ecol. Biogeogr 18, 521–531 (2009).

    • Article
    • Google Scholar
  • 24.

    Hoveka, L. N., Bezeng, S. B., Yessoufou, K., Boatwright, S. & Van der Bank, M. Climate modelling of the top five freshwater invasive plant species in South Africa. S Afr J Bot 102, 33–38 (2016).

    • Article
    • Google Scholar
  • 25.

    Perry, G. L. W., Miller, B. P. & Enright, N. J. A comparison of methods for the statistical analysis of spatial point patterns in plant ecology. Plant Ecol 187, 59–82 (2006).

    • Article
    • Google Scholar
  • 26.

    Carvalho, R., Adami, M., Amaral, S., Bezerra, F. G. & de Aguiar, A. P. D. Changes in secondary vegetation dynamics in a context of decreasing deforestation rates in Para, Brazilian Amazon. Appl Geogr 106, 40–49 (2019).

    • Article
    • Google Scholar
  • 27.

    Barrell, J. & Grant, J. Detecting hot and cold spots in a seagrass landscape using local indicators of spatial association. Landsc. Ecol 28, 2005–2018 (2013).

    • Article
    • Google Scholar
  • 28.

    Potter, K. M., Koch, F. H., Oswalt, C. M. & Iannone, B. V. III Data, data everywhere: detecting spatial patterns in finescale ecological information collected across a continent. Landsc. Ecol 31, 67–84 (2016).

    • Article
    • Google Scholar
  • 29.

    Lee, J. W. et al. Distribution characteristics of invasive alien plants in Jejudo. Asia Pac Biodivers 11, 276–283 (2018).

    • Article
    • Google Scholar
  • 30.

    Morales-Romero, D., Lopez-Garcia, H., Martinez-Rodriguez, J. & Molina-Freaner, F. Documenting a plant invasion: The influence of land use on buffelgrass invasion along roadsides in Sonora, Mexico. J. Arid Environ 164, 53–59 (2019).

  • 31.

    Schmiedel, D. et al. Evaluation system for management measures of invasive alien species. Biodiver Conserv 25, 357–374 (2016).

    • Article
    • Google Scholar
  • 32.

    Spear, D., McGeoch, M. A., Foxcroft, L.C. & Bezuidenhout, H. Alien species in South Africa’s national parks. Koedoe 53, https://doi.org/10.4102/koedoe.v53i1.1032 (2011).

  • 33.

    Foxcroft, L. C., Van Wilgen, N. J., Baard, J. A. & Cole, N. S. Biological invasions in South African National Parks. Bothalia 47, a2158 (2017).

    • Article
    • Google Scholar
  • 34.

    Archer, S. R. et al. Woody Plant Encroachment: Causes and Consequences. In: Briske D. (eds.) Rangeland Systems. Springer Series on Environmental Management. Springer, Cham. (2017).

  • 35.

    Rouget, M., Hui, C., Renteria, J., Richardson, D. M. & Wilson, J. R. U. Plant invasions as a biogeographical assay: Vegetation biomes constrain the distribution of invasive alien species assemblages. S Afr J Bot 101, 24–31 (2015).

    • Article
    • Google Scholar
  • 36.

    Wan, J. Z., Wang, C. J. & Yu, F. H. Modeling impacts of human footprint and soil variability on the potential distribution of invasive plant species in different biomes. Acta Oecol 85, 141–149 (2017a).

  • 37.

    Mucina, L. & Rutherford, M. C. (Editors). The Vegetation of South Africa, Lesotho and Swaziland. Strelitizia 19. Pretoria: South African National Biodiversity Institute (SANBI). pp. 348–436. (2011).

  • 38.

    Darwin, C. The origin of species. London: J. Murray. (1859).

  • 39.

    Bezeng, S. B., Davies, T. J., Yessoufou, K., Maurin, O. & van der Bank, M. Revisiting Darwin’s naturalization conundrum: explaining invasion success of non-native trees and shrubs in southern Africa. J Ecol 103, 871–879 (2015).

    • Article
    • Google Scholar
  • 40.

    Huntley, B. J. Characteristics of South African Biomes. In: de Booysen, P. V. & Tainton N. M. (eds.) Ecological Effects of Fire in South African Ecosystems. Ecological Studies (Analysis and Synthesis), vol 48. Springer, Berlin, Heidelberg. (1984).

  • 41.

    Braun, M., Schindler, S. & Essl, F. Distribution and management of invasive alien plant species in protected areas in Central Europe. J. Nat. Conserv 33, 48–57 (2016).

    • Article
    • Google Scholar
  • 42.

    Dudley, N. et al. (Eds). Natural Solutions: Protected areas helping people cope with climate change.’ (IUCNWCPA, TNC, UNDP, WCS, The World Bank and WWF,: Gland, Switzerland, Washington DC and New York, USA) (2010).

  • 43.

    Hockings, M., Stolton, S., Leverington, F., Dudley, N. & Courrau, J. Evaluating Effectiveness: A framework for assessing management effectiveness of protected areas. 2nd edition. IUCN, Gland, Switzerland and Cambridge, UK. xiv + 105 pp. (2006).

  • 44.

    Spear, D., Foxcroft, L. C., Bezuidenhout, H. & McGeoch, M. A. Human population density explains alien species richness in protected areas. Biol. Conserv 159, 137–147 (2018).

    • Article
    • Google Scholar
  • 45.

    Vicente, J. R. et al. Will climate change drive alien invasive plants into areas of high protection value? An improved model-based regional assessment to prioritise the management of invasions. J. Environ Manage 131, 185–195 (2013).

  • 46.

    Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination network resilience and function. Nature 542, 223–227 (2017).

  • 47.

    Wan, J. Z., Wang, C. J. & Yu, F. H. Wind effects on habitat distributions of wind-dispersed invasive plants across different biomes on a global scale: Assessment using six species. Ecol Inform 42, 38–45 (2017b).

    • Article
    • Google Scholar
  • 48.

    Dean, W. R. J. & Milton, S. J. The dispersal and spread of invasive alien Myrtillocactus geometrizans in the southern Karoo, South Africa. S Afr J Bot 121, 210–215 (2019).

    • Article
    • Google Scholar
  • 49.

    Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J Am Stat Assoc 48, 907–911 (1953).

    • Article
    • Google Scholar
  • 50.

    Vaz, A. S., Alcaraz-Segura, D., Campos, J. C., Vicente, J. R. & Honrado, J. P. Managing plant invasions through the lens of remote sensing: A review of progress and the way forward. Sci Total Environ 642, 1328–1339 (2018).

  • 51.

    Bezeng, S. B., Yessoufou, K., Taylor, P. J. & Tesfamichael, S. G. Expected spatial patterns of alien woody plants in South Africa’s protected areas under current scenario of climate change, Dryad, Dataset, https://doi.org/10.5061/dryad.4j0zpc87q. (2020)

  • 52.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modelling of species geographic distributions. Ecol Modell 190, 231–259 (2006).

    • Article
    • Google Scholar
  • 53.

    Friedman, J. H. & Tibshirani, R. T. Additive logistic regression: a statistical view of boosting. Ann Stat 28, 337–374 (2000).

  • 54.

    Breiman, L. Random forests. Mach. Learn 45, 5–32 (2001).

  • 55.

    Guisan, A., Edwards, T. C. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Modell 157, 89–100 (2002).

    • Article
    • Google Scholar
  • 56.

    Araujo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol Evol 22, 42–47 (2007).

  • 57.

    Mucina, L. & Rutherford, M. C. (eds.). The Vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute, Pretoria. (ISBN: 978-1919976-21-1) (2011).

  • 58.

    Moran, P. A. P. Notes on Continuous Stochastic Phenomena. Biometrika 37, 17–23 (1950).

  • 59.

    Getis, A. & Ord, J. K. The analysis of spatial association by use of distance statistics. Geogr Anal 24, 189–206 (1992).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Island biogeography of soil bacteria and fungi: similar patterns, but different mechanisms

    Food selectivity of anaerobic protists and direct evidence for methane production using carbon from prey bacteria by endosymbiotic methanogen