in

Projected shifts in the foraging habitat of crabeater seals along the Antarctic Peninsula

  • 1.

    Schofield, O. et al. How do polar marine ecosystems respond to rapid climate change? Science 328, 1520–1523 (2010).

  • 2.

    Vaughan, D. G. et al. Recent rapid regional climate warming on the Antarctic Peninsula. Clim. Change 60, 243–274 (2003).

    • Article
    • Google Scholar
  • 3.

    Klinck, J. M., Hofmann, E. E., Beardsley, R. C., Salihoglu, B. & Howard, S. Water-mass properties and circulation on the west Antarctic Peninsula continental shelf in austral fall and winter 2001. Deep Sea Res. Pt II 51, 1925–1946 (2004).

    • Article
    • Google Scholar
  • 4.

    Prézelin, B. B., Hofmann, E. E., Mengelt, C. & Klinck, J. M. The linkage between upper Circumpolar Deep Water (UCDW) and phytoplankton assemblages on the west Antarctic Peninsula continental shelf. J. Mar. Res. 58, 165–202 (2000).

    • Article
    • Google Scholar
  • 5.

    Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).

  • 6.

    Hofmann, E. E. & Hüsrevoglu, Y. S. A circumpolar modeling study of habitat control of Antarctic krill (Euphausia superba) reproductive success. Deep Sea Res. Pt II 50, 3121–3142 (2003).

    • Article
    • Google Scholar
  • 7.

    Ducklow, H. W. et al. Marine pelagic ecosystems: the west Antarctic Peninsula. Phil. Trans. R. Soc. B Biol. Sci. 362, 67–94 (2007).

    • Article
    • Google Scholar
  • 8.

    Croxall, J. P. Southern Ocean environmental changes: effects on seabird, seal and whale populations. Phil. Trans. R. Soc. Lond. B Biol. Sci. 338, 119–127 (1992).

    • Google Scholar
  • 9.

    Hinke, J. T. et al. Spatial and isotopic niche partitioning during winter in chinstrap and Adélie penguins from the South Shetland Islands. Ecosphere 6, 1–32 (2015).

    • Article
    • Google Scholar
  • 10.

    Forcada, J. et al. Responses of Antarctic pack-ice seals to environmental change and increasing krill fishing. Biol. Conserv. 149, 40–50 (2012).

    • Article
    • Google Scholar
  • 11.

    Hückstädt, L. et al. Diet of a specialist in a changing environment: the crabeater seal along the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 455, 287–301 (2012).

  • 12.

    Hazen, E. L. et al. Marine top predators as climate and ecosystem sentinels. Front. Ecol. Environ. 17, 565–574 (2019).

    • Article
    • Google Scholar
  • 13.

    Staniland, I., Boyd, I. & Reid, K. An energy–distance trade-off in a central-place forager, the Antarctic fur seal (Arctocephalus gazella). Mar. Biol. 152, 233–241 (2007).

    • Article
    • Google Scholar
  • 14.

    Pitman, R. L. & Ensor, P. Three forms of killer whales (Orcinus orca) in Antarctic waters. J. Cetac. Res. Manage. 5, 131–140 (2003).

    • Google Scholar
  • 15.

    Burns, J. M., Hindell, M. A., Bradshaw, C. J. A. & Costa, D. P. Fine-scale habitat selection of crabeater seals as determined by diving behavior. Deep Sea Res. Pt II 55, 500–514 (2008).

    • Article
    • Google Scholar
  • 16.

    Friedlaender, A. S. et al. Ecological niche modeling of sympatric krill predators around Marguerite Bay, western Antarctic Peninsula. Deep Sea Res. Pt II 58, 1729–1740 (2011).

    • Article
    • Google Scholar
  • 17.

    Bengtson, J. L. & Stewart, B. S. Diving and haulout behavior of crabeater seals in the Weddell Sea, Antarctica, during March 1986. Polar Biol. 12, 635–644 (1992).

    • Article
    • Google Scholar
  • 18.

    Atkinson, A. et al. KRILLBASE: a circumpolar database of Antarctic krill and salp numerical densities, 1926–2016. Earth Syst. Sci. Data 9, 193–210 (2017).

    • Article
    • Google Scholar
  • 19.

    Reiss, C. S. et al. Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: implications for top predators and fishery management. Mar. Ecol. Prog. Ser. 568, 1–16 (2017).

  • 20.

    Lawson, G. L., Wiebe, P. H., Ashjian, C. J. & Stanton, T. K. Euphausiid distribution along the western Antarctic Peninsula—part B: distribution of euphausiid aggregations and biomass, and associations with environmental features. Deep Sea Res. Pt II 55, 432–454 (2008).

    • Article
    • Google Scholar
  • 21.

    Lascara, C. M., Hofmann, E. E., Ross, R. M. & Quetin, L. B. Seasonal variability in the distribution of Antarctic krill, Euphausia superba, west of the Antarctic Peninsula. Deep Sea Res. Pt I 46, 951–984 (1999).

    • Article
    • Google Scholar
  • 22.

    Piñones, A. & Fedorov, A. V. Projected changes of Antarctic krill habitat by the end of the 21st century. Geophys. Res. Lett. 43, 8580–8589 (2016).

    • Article
    • Google Scholar
  • 23.

    Piñones, A., Hofmann, E. E., Daly, K. L., Dinniman, M. S. & Klinck, J. M. Modeling environmental controls on the transport and fate of early life stages of Antarctic krill (Euphausia superba) on the western Antarctic Peninsula continental shelf. Deep Sea Res. Pt I 82, 17–31 (2013).

    • Article
    • Google Scholar
  • 24.

    Dinniman, M. S., Klinck, J. M. & Hofmann, E. E. Sensitivity of Circumpolar Deep Water transport and ice shelf basal melt along the West Antarctic Peninsula to changes in the winds. J. Clim. 25, 4799–4816 (2012).

    • Article
    • Google Scholar
  • 25.

    Stephens D. W. & Krebs J. R. Foraging Theory (Princeton Univ. Press, 1986).

  • 26.

    Curtis, C., Stewart, B. S. & Karl, S. A. Pleistocene population expansions of Antarctic seals. Mol. Ecol. 18, 2112–2121 (2009).

    • Article
    • Google Scholar
  • 27.

    Bortolotto, E., Bucklin, A., Mezzavilla, M., Zane, L. & Patarnello, T. Gone with the currents: lack of genetic differentiation at the circum-continental scale in the Antarctic krill Euphausia superba. BMC Genet. 12, 32 (2011).

    • Article
    • Google Scholar
  • 28.

    Nachtsheim, D. A., Jerosch, K., Hagen, W., Plötz, J. & Bornemann, H. Habitat modelling of crabeater seals (Lobodon carcinophaga) in the Weddell Sea using the multivariate approach Maxent. Polar Biol. 40, 961–976 (2017).

    • Article
    • Google Scholar
  • 29.

    Davis, C. S., Stirling, I., Strobeck, C. & Coltman, D. W. Population structure of ice‐breeding seals. Mol. Ecol. 17, 3078–3094 (2008).

    • Article
    • Google Scholar
  • 30.

    Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458, 1–19 (2012).

    • Article
    • Google Scholar
  • 31.

    Trivelpiece, W. Z. et al. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proc. Natl Acad. Sci. USA 108, 7625–7628 (2011).

  • 32.

    Chapman, E. W., Hofmann, E. E., Patterson, D. L. & Fraser, W. R. The effects of variability in Antarctic krill (Euphausia superba) spawning behavior and sex/maturity stage distribution on Adélie penguin (Pygoscelis adeliae) chick growth: a modeling study. Deep Sea Res. Pt II 57, 543–558 (2010).

    • Article
    • Google Scholar
  • 33.

    Hofmann, E. E., Wiebe, P. H., Costa, D. P. & Torres, J. J. An overview of the Southern Ocean Global Ocean Ecosystems Dynamics program. Deep Sea Res. Pt II 51, 1921–1924 (2004).

    • Article
    • Google Scholar
  • 34.

    Costa, D. P. et al. Approaches to studying climatic change and its role on the habitat selection of Antarctic pinnipeds. Integr. Comp. Biol. 50, 1018–1030 (2010).

    • Article
    • Google Scholar
  • 35.

    Burns, J. M. et al. Winter habitat use and foraging behavior of crabeater seals along the western Antarctic Peninsula. Deep Sea Res. Pt II 51, 2279–2303 (2004).

    • Article
    • Google Scholar
  • 36.

    Grimwood, B. G., Plummer, T. H. Jr. & Tarentino, A. L. Purification and characterization of a neutral zinc endopeptidase secreted by Flavobacterium meningosepticum. Arch. Biochem. Biophys. 311, 127–132 (1994).

  • 37.

    Fedak, M. A., Lovell, P. & Grant, S. M. Two approaches to compressing and interpreting time–depth information as collected by time–depth recorders and satellite-linked data recorders. Mar. Mammal Sci. 17, 94–110 (2001).

    • Article
    • Google Scholar
  • 38.

    Patterson, T. A., McConnell, B. J., Fedak, M. A., Bravington, M. V. & Hindell, M. A. Using GPS data to evaluate the accuracy of state–space methods for correction of Argos satellite telemetry error. Ecology 91, 273–285 (2010).

    • Article
    • Google Scholar
  • 39.

    Jonsen, I. D., Flemming, J. M. & Myers, R. A. Robust state–space modeling of animal movement data. Ecology 86, 2874–2880 (2005).

    • Article
    • Google Scholar
  • 40.

    McConnell, B. J., Fedak, M. A., Hooker, S. & Patterson, T. in Marine Mammal Ecology and Conservation (eds Boyd, I. L., Bowen, W. D. & Iverson, S. J.) 450 (Oxford Univ. Press, 2010).

  • 41.

    Bovet, P. & Benhamou, S. Spatial analysis of animals’ movements using a correlated random walk model. J. Theor. Biol. 131, 419–433 (1988).

    • Article
    • Google Scholar
  • 42.

    Byers, J. A. Correlated random walk equations of animal dispersal resolved by simulation. Ecology 82, 1680–1690 (2001).

    • Article
    • Google Scholar
  • 43.

    Kareiva, P. M. & Shigesada, N. Analyzing insect movement as a correlated random walk. Oecologia 56, 234–238 (1983).

  • 44.

    Bergman, C. M., Schaefer, J. A. & Luttich, S. N. Caribou movement as a correlated random walk. Oecologia 123, 364–374 (2000).

  • 45.

    Dinniman, M. S., Klinck, J. M. & Smith, W. O. A model study of Circumpolar Deep Water on the west Antarctic Peninsula and Ross Sea continental shelves. Deep Sea Res. Pt II 58, 1508–1523 (2011).

  • 46.

    Meredith, M. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 203–320 (IPCC, 2019).

  • 47.

    Meredith, M. P. & King, J. C. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. 32, L19604 (2005).

    • Google Scholar
  • 48.

    Turner, J. et al. Antarctic climate change during the last 50 years. Int. J. Climatol. 25, 279–294 (2005).

    • Article
    • Google Scholar
  • 49.

    Stammerjohn, S. E., Martinson, D. G., Smith, R. C. & Iannuzzi, R. A. Sea ice in the western Antarctic Peninsula region: spatio-temporal variability from ecological and climate change perspectives. Deep Sea Res. Pt II 55, 2041–2058 (2008).

    • Article
    • Google Scholar
  • 50.

    Stammerjohn, S. E., Martinson, D. G., Smith, R. C., Yuan, X. & Rind, D. Trends in Antarctic annual sea ice retreat and advance and their relation to El Nino–Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res. Oceans 113, C03S90 (2008).

    • Article
    • Google Scholar
  • 51.

    Marshall, G. J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 4134–4143 (2003).

    • Article
    • Google Scholar
  • 52.

    Abram, N. J. et al. Evolution of the Southern Annular Mode during the past millennium. Nat. Clim. Change 4, 564–569 (2014).

  • 53.

    Lubin, D., Wittenmyer, R. A., Bromwich, D. H. & Marshall, G. J. Antarctic Peninsula mesoscale cyclone variability and climatic impacts influenced by the SAM. Geophys. Res. Lett. 35, L02808 (2008).

    • Article
    • Google Scholar
  • 54.

    Turner, J. et al. Antarctic climate change and the environment: an update. Polar Record 50, 237–259 (2014).

    • Article
    • Google Scholar
  • 55.

    Jacobs, S. Observations of change in the Southern Ocean. Phil. Trans. A Math. Phys. Eng. Sci. 364, 1657–1681 (2006).

  • 56.

    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 1567–1612 (Cambridge Univ. Press, 2014).

  • 57.

    Spence, P. et al. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett. 41, 4601–4610 (2014).

    • Article
    • Google Scholar
  • 58.

    Aarts, G., MacKenzie, M., McConnell, B., Fedak, M. & Matthiopoulos, J. Estimating space-use and habitat preference from wildlife telemetry data. Ecography 31, 140–160 (2008).

    • Article
    • Google Scholar
  • 59.

    Raymond, B. et al. Important marine habitat off east Antarctica revealed by two decades of multi-species predator tracking. Ecography 38, 121–129 (2015).

    • Article
    • Google Scholar
  • 60.

    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

  • 61.

    R Core Development Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  • 62.

    Aarts, G., Fieberg, J. & Matthiopoulos, J. Comparative interpretation of count, presence–absence and point methods for species distribution models. Methods Ecol. Evol. 3, 177–187 (2012).

    • Article
    • Google Scholar
  • 63.

    Wood, S. Package ‘mgcv’. R package version 1.8-31 (2019).

  • 64.

    Ripley, B., Venables, B., Bates, D. M., Hornik, K., Gebhardt, A. & Firth, D. MASS: Support functions and datasets for Venables and Ripley’s MASS. R package version 7.3-51.5 (2019).

  • 65.

    Ropert-Coudert, Y. et al. Standardized data from the Retrospective Analysis of Antarctic Tracking Data project from the Scientific Committee on Antarctic Research (Australian Antarctic Division Data Centre, 2019); https://doi.org/10.4225/15/5afcb927e8162


  • Source: Ecology - nature.com

    Associate Professor Amy Moran-Thomas receives the 2020 Levitan Prize in the Humanities

    Engineers develop precision injection system for plants