in

Nectar mimicry: a new phenomenon

  • 1.

    Gardener, M. C. & Gillman, M. P. The taste of nectar – a neglected area of pollination ecology. Oikos 98, 552–557 (2002).

    • Article
    • Google Scholar
  • 2.

    Vogel, S. Blütenbiologische Typen als Elemente der Sippengliederung, dargestellt anhand der Flora Südafrikas. In: Troll, W. & V. Guttenberg, H. (eds) Bot. Studien H. l. 338 pp. (Fischer, 1954).

  • 3.

    Brewer, J. W., Collyard, K. J. & Lott, C. E. Jr Analysis of sugars in dwarf mistletoe nectar. Can. J. Bot. 52, 2533–2538 (1974).

  • 4.

    Meve, U. & Liede, S. Floral biology and pollination in stapeliads – new results and a literature review. Plant Syst. Evol. 192, 99–116 (1994).

    • Article
    • Google Scholar
  • 5.

    Aldasoro, J. J., Aedo, C. & Navarro, C. Insect attracting structures on Erodium petals (Geraniaceae). Plant Biol. 2, 471–481 (2000).

    • Article
    • Google Scholar
  • 6.

    Zhang, F. P., Larson-Rabin, Z., Li, D. Z. & Wang, H. Colored nectar as an honest signal in plant-animal interactions. Plant Signal. Behav. 7, 811–812 (2012).

  • 7.

    Johnson, S. D., Hargreaves, A. L. & Brown, M. Dark, bitter-tasting nectar functions as filter of flower visitors in a bird-pollinated plant. Ecology 87, 2709–2716 (2006).

  • 8.

    Hansen, D. M., Beer, K. & Müller, C. B. Mauritian coloured nectar no longer a mystery: a visual signal for lizard pollinators. Biol. Lett. 22, 165–168 (2006).

    • Article
    • Google Scholar
  • 9.

    Hansen, D. M., Olesen, J. M., Mione, T., Johnson, S. D. & Müller, C. B. Coloured nectar: distribution, ecology, and evolution of an enigmatic floral trait. Biol. Rev. 82, 83–111 (2007).

  • 10.

    Kevan, P. G. Fluorescent nectar. Science 194, 341–342 (1975).

  • 11.

    Thorp, R. W., Briggs, D. L., Estes, J. R. & Erickson, E. H. Nectar fluorescence under ultraviolet irradiation. Science 189, 476–478 (1975).

  • 12.

    Waller, G. D. & Martin, J. H. Fluorescence for identification of onion nectar in foraging honey bees. Environ. Entomol. 7, 766–768 (1978).

    • Article
    • Google Scholar
  • 13.

    von Arx, M., Goyret, J., Davidowitz, G. & Raguso, R. A. Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths. Proc. Natl. Acad Sci. USA 109, 9471–9476 (2012).

  • 14.

    Howell, A. D. & Alarcón, R. Osmia bees (Hymenoptera: Megachilidae) can detect nectar-rewarding flowers using olfactory cues. Anim. Beh. 74, 199–205 (2007).

    • Article
    • Google Scholar
  • 15.

    Endress, P. K. & Matthews, M. L. Elaborate petals and staminodes in eudicots, diversity, function, and evolution. Org. Divers. Evol. 6, 257–293 (2006).

    • Article
    • Google Scholar
  • 16.

    Erbar, C. Nectar secretion and nectaries in basal angiosperms, magnoliids and non-core eudicots and a comparison with core eudicots. Plant Div. Evol. 131, 63–143 (2014).

    • Article
    • Google Scholar
  • 17.

    Weryszko-Chmielewska, E. & Sulborska, A. Staminodial nectary structure in two Pulsatilla (L.) species. Acta Biologica Cracoviensia 53, 94–103 (2012).

    • Google Scholar
  • 18.

    Kugler, H. Zum Problem der Dipterenblumen. Österr. Bot. Z. 102, 529–541 (1955).

    • Article
    • Google Scholar
  • 19.

    Woodcock, T. S., Larson, B. M. H., Kevan, P. G., Inouye, D. W. & Lunau, K. Flies and flowers II: floral attractants and rewards. J. Poll. Ecol. 12, 63–94 (2014).

    • Google Scholar
  • 20.

    Sprengel, C. K. Das entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen. (Vieweg, 1793).

  • 21.

    Pacini, E. Nectar production and presentation. In: Nicolson, S. W, Nepi, M. & Pacini, E. (eds) Nectaries and Nectar. pp 167‒214 (Springer 2007).

  • 22.

    Moyroud, E. & Glover, B. J. The physics of pollinator attraction. New Phytol. 216, 350–354 (2017).

  • 23.

    Daumann, E. Über die „Scheinnektarien” von Parnassia palustris und anderer Blütenarten. Ein Beitrag zur experimentellen Blütenökologie. Jahrb. Wiss. Bot., Leipzig 77, 104–149 (1932).

    • Google Scholar
  • 24.

    Vogel, S. Betrug bei Pflanzen: Die Täuschblumen. Abh. Math.-Naturwiss. Kl. Akad. Wiss. Mainz 1, 1–48 (1993).

    • Google Scholar
  • 25.

    Weber, A. S. Antheseverlauf und Bestäubung der Blüte von Nigella arvensis (Ranunculaceae). Verh. Zool.-Bot. Ges. Österreich 130, 99–125 (1993).

    • Google Scholar
  • 26.

    Zhao, L., Liu, P., Che, X.-F., Wang, W. & Ren, Y. Floral organogenesis of Helleborus thibetanus and Nigella damascena (Ranunculaceae) and its systematic significance. Bot. J. Linn. Soc. 166, 431443 (2011).

    • Article
    • Google Scholar
  • 27.

    Daumann, E. Über postflorale Nektarabscheidung. Zugleich ein weiterer Beitrag zu unseren Kenntnissen über ungewöhnlichen Blumenbesuch der Honigbiene. Beih. Bot. Centralbl., Sect. 1, Dresden 49, 720–734 (1932).

    • Google Scholar
  • 28.

    Daumann, E. Über die Bestäubungsökologie der Parnassia-Blüte II. Jahrb. Wissenschaft. Bot. 81, 707–717 (1935).

    • Google Scholar
  • 29.

    Kugler, H. Blütenökologische Untersuchungen mit Goldfliegen (Lucilien). Ber. Deutsch. Bot. Ges. 64, 327–341 (1951).

    • Google Scholar
  • 30.

    Luo, S., Zhang, D. & Renner, S. S. Duodichogamy and androdioecy in the Chinese Phyllanthaceae Bridelia tomentosa. Am. J. Bot. 94, 260–265 (2007).

  • 31.

    Raine, N. E. & Chittka, L. The adaptive significance of sensory bias in a foraging context: floral colour preferences in the bumblebee Bombus terrestris. PLoS ONE 2(6), e556 (2007).

  • 32.

    Lunau, K. Unidirectionality of floral colour changes. Plant Syst. Evol. 200, 125–140 (1996).

    • Article
    • Google Scholar
  • 33.

    Lunau, K. & Wester, P. Mimicry and deception in pollination. In: Becard, G. (ed) Advances in Botanical Research 82, How Plants Communicate with their Biotic Environment; pp. 259‒279 (Academic Press 2017).

  • 34.

    Slater, A. T. & Calder, D. M. The pollination biology of Dendrobium speciosum Smith: a case of false advertising? Aust. J. Bot 36, 145–158 (1988).

    • Article
    • Google Scholar
  • 35.

    Hansen, D. M., Van der Niet, T. & Johnson, S. D. Floral signposts: testing the significance of visual ‘nectar guides’ for pollinator behaviour and plant fitness. Proc. R. Soc. B 279, 634–639 (2012).

  • 36.

    Lunau, K. The ecology and evolution of visual pollen signals. Plant Syst. Evol. 222, 89–111 (2000).

    • Article
    • Google Scholar
  • 37.

    Lunau, K. Stamens and mimic stamens as components of floral colour patterns. Bot. Jahrb. Syst. 127, 13–41 (2007).

    • Article
    • Google Scholar
  • 38.

    Lunau, K., Wacht, S. & Chittka, L. Colour choices of naive bumble bees and their implications for colour perception. J. Comp. Physiol. A 178, 477–489 (1996).

    • Article
    • Google Scholar
  • 39.

    Wilmsen, S., Gottlieb, R., Junker, R. R. & Lunau, K. Bumblebees require visual pollen stimuli to initiate and multimodal stimuli to complete a full behavioral sequence in close-range flower orientation. Ecol. Evol. 7, 1384–1393 (2017).

  • 40.

    Lunau, K. & Wacht, S. Optical releasers of the innate proboscis extension in the hoverfly Eristalis tenax L. (Syrphidae, Diptera). J. Comp. Physiol. A 174, 574–579 (1994).

    • Article
    • Google Scholar
  • 41.

    An, L. et al. The yellow specialist: Dronefly Eristalis tenax prefers different yellow colours for landing and proboscis extension. J. Exp. Biol. 221, jeb184788 (2018).

  • 42.

    Lunau, K. et al. Limitations of learning in the proboscis reflex of the flower visiting syrphid fly Eristalis tenax. PLoS ONE 13(3), e0194167 (2018).

  • 43.

    Leonard, A. S., Brent, J., Papaj, D. R. & Dornhaus, A. Floral nectar guide patterns discourage nectar robbing by bumble bees. PLoS ONE 8(2), e55914 (2013).

  • 44.

    Dinkel, T. & Lunau, K. How drone flies (Eristalis tenax L, Syrphidae, Diptera) use floral guides to locate food sources. J. Insect Physiol. 47, 1111–1118 (2001).

  • 45.

    van der Kooi, C., Dyer, A. G., Kevan, P. G. & Lunau, K. Functional significance of the optical properties of flowers for visual signalling. Annals of Botany 123, 263–276 (2019).

  • 46.

    Verhoeven, C., Ren, Z. X. & Lunau, K. False colour photography: a novel digital approach to visualize the bee view of flowers. J. Poll. Ecol. 23, 102–118 (2018).

    • Google Scholar
  • 47.

    Liu, D. T. et al. Resources evaluation of seed plants in Yulong Snow Mountain, Lijiang, northwestern Yunnan. Plant Diversity and Resources 37, 318–326 (2015).

    • Google Scholar
  • 48.

    Zhao, Y. H. et al. Floral traits influence pollen vectors’ choices in higher elevation communities in the Himalaya-Hengduan Mountains. BMC Ecol 16, 26 (2016).

  • 49.

    Zhao, Y. H. et al. The topological differences between visitation and pollen transport networks: a comparison in species rich communities of the Himalaya–Hengduan Mountains. Oikos 128, 551–562 (2019).

    • Article
    • Google Scholar
  • 50.

    Vogel, S. Ecophysiology of zoophilic pollination. In: Lange, O. L., Nobel, P. S., Osmond, C. B. & Ziegler, H. (eds) Physiological plant ecology III. Responses to the chemical and biological environment; pp 560‒624 (Springer 1983).

  • 51.

    Whitney, H. M., Rands, S. A., Elton, N. J. & Ellis, A. G. A technique for measuring petal gloss, with examples from the Namaqualand flora. PLoS ONE 7(1), e29476 (2012).

  • 52.

    Koski, M. H. & Ashman, T. L. Floral pigmentation patterns provide an example of Gloger’s rule in plants. Nat. Plants 1, 14007 (2015).

  • 53.

    Roguz, K. et al. Functional diversity of nectary structure and nectar composition in the genus Fritillaria (Liliaceae). Front. Plant Sci. 9, 1246 (2018).

  • 54.

    Biedinger, N. & Barthlott, W. Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten. I Monocotyledonae. Trop. Subtrop. Pflanzenwelt 86, 1–122 (1993).

    • Google Scholar
  • 55.

    Burr, B. & Barthlott, W. Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten II. Magnoliidae, Ranunculidae, Hamamelididae, Caryophyllidae, Rosidae. Trop. Subtrop. Pflanzenwelt 87, 1–193 (1993).

    • Google Scholar
  • 56.

    Burr, B., Rosen, D. & Barthlott, W. Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten III. Dilleniidae und Asteridae s.l. Trop. Subtrop. Pflanzenwelt 93, 1–185 (1995).

    • Google Scholar
  • 57.

    Whitney, H. M., Reed, A., Rands., S. A., Chittka, L. & Glover, B. J. Flower iridescence increases object detection in the insect visual system without compromising object identity. Curr. Biol. 26, 802–808 (2016).

  • 58.

    Lunau, K. Flower colour: How bumblebees handle colours with perceptually changing hues. Curr. Biol. 2, R229–R231 (2016).

  • 59.

    Daumann, E. On the pollination ecology of Parnassia flowers. A new contribution to the experimental flower ecology. Biol. plant. 2, 113–125 (1960).

    • Article
    • Google Scholar
  • 60.

    Pyke, G. H. Floral nectar: Pollinator attraction or manipulation? Trends Ecol. Evol. 31, 339–341 (2016).

  • 61.

    Kraaij, K. & van der Kooi, C. J. Surprising absence of association between flower surface microstructure and pollination system. Plant Biology, 22, 177–183 (2020).

  • 62.

    Erickson, E. H. & Garment, M. B. Soya-Bean flowers: Nectary ultrastructure, nectar guides, and orientation on the flower by foraging honeybees. J. Apic. Res. 18, 3–11 (1979).

    • Article
    • Google Scholar
  • 63.

    Whitney, H. M., Glover, B. J., Walker, R. & Ellis, A. G. The contribution of epidermal structure to flower colour in the South African flora. Curtis’s Bot. Mag. 28, 349–371 (2011).

    • Article
    • Google Scholar
  • 64.

    Johnson, S. D. & Midgley, J. J. Pollination by monkey beetles (Scarabaeidae: Hopliini): Do color and dark centers of flowers influence alighting behavior? Environ. Entomol. 30, 861–868 (2001).

    • Article
    • Google Scholar
  • 65.

    Vignolini, S. et al. The mirror crack’d: both pigment and structure contribute to the glossy blue appearance of the mirror orchid. Ophrys speculum. New Phytol. 196, 1038–1047 (2012).

  • 66.

    Paulus, H. F. Speciation, pattern recognition and the maximization of pollination: general questions and answers given by the reproductive biology of the orchid genus Ophrys. J. Comp. Physiol. A 205, 285–300 (2019).

    • Article
    • Google Scholar
  • 67.

    Dafni, A. et al. Red bowl-shaped flowers: convergence for beetle pollination in the Mediterranean region. Israel J. Bot. 39, 81–92 (1990).

    • Google Scholar
  • 68.

    Van Kleunen, M., Nänni, I., Donaldson, J. S. & Manning, J. C. The role of beetle marks and flower colour on visitation by monkey beetles (Hopliini) in the greater cape floral region, South Africa. Ann. Bot. 100, 1483–1489 (2007).

  • 69.

    Thomas, M., Rudall, P., Ellis, A., Savolainen, V. & Glover, B. J. Development of a complex floral trait: the pollinator-attracting petal spots of the beetle daisy, Gorteria diffusa (Asteraceae). Am. J. Bot. 96, 2184–2196 (2009).

  • 70.

    McDonald, D. J. & van der Walt, J. J. A. Observations on the pollination of Pelargonium tricolor, section Campylia (Geraniaceae). S. Afr. J. Bot. 58, 386–392 (1992).

    • Article
    • Google Scholar
  • 71.

    Dafni, A. Mimicry and pollination by deception. Annl. Rev. Ecol. Syst. 15, 259–278 (1984).

    • Article
    • Google Scholar
  • 72.

    Lloyd, D. G. & Barrett, S. Floral Biology. Studies on Floral Evolution in Animal-Pollinated Plants. Chapman and Hall 1996).

  • 73.

    Willmer, P. Pollination and Floral Ecology (Princeton University Press 2011).

  • 74.

    Johnson, S. D. & Schiestl, F. P. Floral mimicry (Oxford University Press 2016).

  • 75.

    Raguso, R. A. Why are some floral nectars scented? Ecology 85, 1486–1494 (2004).

    • Article
    • Google Scholar
  • 76.

    Knauer, A. C. & Schiestl, F. P. Bees use honest floral signals as indicators of reward when visiting flowers. Ecol. Lett. 18, 135–143 (2015).

  • 77.

    Parachnowitsch, A. L., Manson, J. S. & Sletvold, N. Evolutionary ecology of nectar. Ann. Bot. 123, 247–261 (2019).

  • 78.

    Indsto, J. O. et al. Pollination of Diuris maculata (Orchidaceae) by male Trichocolletes venustus bees. Austr. J. Bot. 54, 669–679 (2006).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Projected shifts in the foraging habitat of crabeater seals along the Antarctic Peninsula

    DNA Barcoding Silver Butter Catfish (Schilbe intermedius) Reveals Patterns of Mitochondrial Genetic Diversity Across African River Systems