in

Diminishing CO2-driven gains in water-use efficiency of global forests

  • 1.

    Peters, W. et al. Increased water-use efficiency and reduced CO2 uptake by plants during droughts at a continental scale. Nat. Geosci. 11, 744–748 (2018).

  • 2.

    Skinner, C. B. et al. The role of plant CO2 physiological forcing in shaping future daily-scale precipitation. J. Clim. 30, 2319–2340 (2017).

    • Article
    • Google Scholar
  • 3.

    Frank, D. C. et al. Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Clim. Change 5, 579–583 (2015).

  • 4.

    van der Sleen, P. et al. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nat. Geosci. 8, 24–28 (2015).

    • Article
    • Google Scholar
  • 5.

    Marvel, K. et al. Twentieth-century hydroclimate changes consistent with human influence. Nature 569, 59–65 (2019).

  • 6.

    Betts, R. A. et al. Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448, 1037–1041 (2007).

  • 7.

    Kooperman, G. J. et al. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nat Clim. Change 8, 434–440 (2018).

    • Article
    • Google Scholar
  • 8.

    Richardson, T. B. et al. Carbon dioxide physiological forcing dominates projected eastern Amazonian drying. Geophys. Res. Lett. 45, 2815–282 (2018).

  • 9.

    Langenbrunner, B., Pritchard, M. S., Kooperman, G. J. & Randerson, J. T. Why does Amazon precipitation decrease when tropical forests respond to increasing CO2? Earths Future 7, 450–468 (2018).

    • Article
    • Google Scholar
  • 10.

    Keeling, R. F. et al. Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis. Proc. Natl Acad. Sci. USA 114, 10361–10366 (2017).

  • 11.

    Franks, P. J. et al. Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytol. 197, 1077–1094 (2013).

  • 12.

    Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).

  • 13.

    Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Ann. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).

    • Article
    • Google Scholar
  • 14.

    Cao, L. et al. Importance of carbon dioxide physiological forcing to future climate change. Proc. Natl Acad. Sci. USA 107, 9513–9518 (2010).

  • 15.

    de Boer, H. J. et al. Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2. Proc. Natl Acad. Sci. USA 108, 4041–4046 (2011).

    • Article
    • Google Scholar
  • 16.

    Richardson, T. B., Forster, P. M., Andrews, T. & Parker, D. J. Understanding the rapid precipitation response to CO2 and aerosol forcing on a regional scale. J. Clim. 29, 583–594 (2016).

    • Article
    • Google Scholar
  • 17.

    Skinner, C. B., Poulsen, C. J. & Mankin, J. S. Amplification of heat extremes by plant CO2 physiological forcing. Nat. Commun. 9, 1094 (2018).

    • Article
    • Google Scholar
  • 18.

    Kala, J. et al. Impact of the representation of stomatal conductance on model projections of heatwave intensity. Sci. Rep. 6, 23418 (2016).

  • 19.

    Adams, M. A., Buckley, T. N. & Turnbull, T. L. Rainfall drives variation in rates of change in intrinsic water use efficiency of tropical forests. Nat. Commun. 10, 3661 (2019).

    • Article
    • Google Scholar
  • 20.

    Estrada, F., Perron, P. & Martinez-López, B. Statistically derived contributions of diverse human influences to twentieth-century temperature changes. Nat. Geosci. 6, 1050–1055 (2013).

  • 21.

    Bastos, A. et al. Re-evaluating the 1940s CO2 plateau. Biogeosci. 13, 4877–4897 (2016).

  • 22.

    Hofmann, D., Butler, J. H. & Tans, P. P. A new look at atmospheric carbon dioxide. Atmos. Environ. 43, 2084–2086 (2009).

  • 23.

    Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–372 (2005).

    • Article
    • Google Scholar
  • 24.

    Oren, R. et al. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 41, 469–472 (2001).

    • Article
    • Google Scholar
  • 25.

    Guerrieri, R. et al. Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proc. Natl Acad. Sci. USA 116, 16909–16914 (2019).

  • 26.

    Lin, Y.-S. et al. Optimal stomatal behaviour around the world. Nat. Clim. Change 5, 459–464 (2015).

  • 27.

    Klein, T. & Ramon, U. Stomatal sensitivity to CO2 diverges between angiosperm and gymnosperm tree species. Funct. Ecol. 33, 1411–1424 (2019).

    • Article
    • Google Scholar
  • 28.

    Craine, J. M. et al. Isotopic evidence for oligotrophication of terrestrial ecosystems. Nat. Ecol. Evol. 2, 1735–1744 (2018).

    • Article
    • Google Scholar
  • 29.

    Donohue, R. J., Roderick, M. L., McVicar, T. R. & Yang, Y. A simple hypothesis of how leaf and canopy-level transpiration and assimilation respond to elevated CO2 reveals distinct response patterns between disturbed and undisturbed vegetation. J. Geophys. Res. Biogeosci. 122, 168–18415 (2017).

  • 30.

    Yang, Y. et al. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Sci. Rep. 6, 23284 (2016).

  • 31.

    Tang, X. et al. How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth? Sci. Rep. 4, 7483 (2014).

  • 32.

    Esper, J. et al. Low-frequency noise in δ13C and δ18O tree ring data: a case study of Pinus uncinata in the Spanish Pyrenees. Glob. Biogeochem. Cycles 24, GB4018 (2010).

    • Article
    • Google Scholar
  • 33.

    Jasechko, S. et al. Terrestrial water fluxes dominated by transpiration. Nature 496, 347–350 (2012).

    • Article
    • Google Scholar
  • 34.

    McCarroll, D. & Loader, N. J. Stable isotopes in tree rings. Q. Sci. Rev. 23, 771–801 (2004).

    • Article
    • Google Scholar
  • 35.

    Robertson, A. et al. Hypothesized climate forcing time series for the last 500 years. J. Geophys. Res. 106, 14783–14803 (2001).

    • Article
    • Google Scholar
  • 36.

    Keeling, C. D. et al. in A History of Atmospheric CO 2and its effects on Plants, Animals and Ecosystems (eds Ehleringer, J. R. et al.) 83–113 (Springer, 2005).

  • 37.

    Ubierna, N. Holloway-Phillips, M.-M. & Farquhar, G. D. in PhotosynthesisMethods and Protocols (Ed. Covshoff, S.) 155–196 (Humana Press, 2018).

  • 38.

    Farquhar, G. D. et al. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

  • 39.

    Wong, S. C. et al. Stomatal conductance correlates with photosynthetic capacity. Nature 282, 424–426 (1979).

    • Article
    • Google Scholar
  • 40.

    De Pury, D. G. G. & Farquhar, G. D. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ. 20, 537–557 (1997).

    • Article
    • Google Scholar
  • 41.

    Brienen, R. J. W. et al. Tree height strongly affects estimates of water-use efficiency responses to climate and CO2 using isotopes. Nat. Commun. 8, 288 (2017).

  • 42.

    Loader, N. J. et al. Stable carbon isotopes from Torneträsk, northern Sweden provide a millennial length reconstruction of summer sunshine and its relationship to Arctic circulation. Q. Sci. Rev. 62, 97–113 (2013).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Associate Professor Amy Moran-Thomas receives the 2020 Levitan Prize in the Humanities

    Engineers develop precision injection system for plants