in

Disconnects between ecological theory and data in phenological mismatch research

  • 1.

    Ovaskainen, O. et al. Community-level phenological response to climate change. Proc. Natl Acad. Sci. USA 110, 13434–13439 (2013).

  • 2.

    CaraDonna, P. J., Iler, A. M. & Inouye, D. W. Shifts in flowering phenology reshape a subalpine plant community. Proc. Natl Acad. Sci. USA 111, 4916–4921 (2014).

  • 3.

    Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241 (2016).

  • 4.

    Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018). Shows that the relative timing of interacting species across many types of interactions and taxonomic groups has changed substantially in recent decades.

  • 5.

    Post, E. & Forchhammer, M. C. Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philos. T. Roy. Soc. B 363, 2367–2373 (2007). Demonstrates the ecological consequences of trophic mismatch for a migratory herbivore and its host plant community due to climate change.

    • Article
    • Google Scholar
  • 6.

    Plard, F. et al. Mismatch between birth date and vegetation phenology slows the demography of roe deer. PLoS Biol. 12, e1001828 (2014).

  • 7.

    Doiron, M., Gauthier, G. & Lévesque, E. Trophic mismatch and its effects on the growth of young in an Arctic herbivore. Global Change Biol. 21, 4364–4376 (2015).

    • Article
    • Google Scholar
  • 8.

    Burkle, L. A., Marlin, J. C. & Knight, T. M. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339, 1611–1615 (2013).

  • 9.

    Vatka, E., Orell, M. & RytkÖnen, S. Warming climate advances breeding and improves synchrony of food demand and food availability in a boreal passerine. Global Change Biol. 17, 3002–3009 (2011).

    • Article
    • Google Scholar
  • 10.

    Burthe, S. et al. Phenological trends and trophic mismatch across multiple levels of a North Sea pelagic food web. Marine Ecol. Prog. Ser. 454, 119–133 (2012).

    • Article
    • Google Scholar
  • 11.

    Reed, T. E., Jenouvrier, S. & Visser, M. E. Phenological mismatch strongly affects individual fitness but not population demography in a woodland passerine. J. Anim. Ecol. 82, 131–144 (2013).

    • Article
    • Google Scholar
  • 12.

    Gienapp, P., Reed, T. E. & Visser, M. E. Why climate change will invariably alter selection pressures on phenology. P. Roy. Soc. B-Biol. Sci. 281, 20141611 (2014).

    • Article
    • Google Scholar
  • 13.

    Johansson, J., Kristensen, N. P., Nilsson, J.-Å. & Jonzén, N. The eco-evolutionary consequences of interspecific phenological asynchrony—a theoretical perspective. Oikos 124, 102–112 (2015). Reviews theoretical work related to Cushing’s hypothesis and proposes that phenological mismatch is not necessarily an expected outcome based on evolutionary theory.

    • Article
    • Google Scholar
  • 14.

    Bewick, S., Cantrell, R. S., Cosner, C. & Fagan, W. F. How resource phenology affects consumer population dynamics. Am. Nat. 187, 151–166 (2016).

    • Article
    • Google Scholar
  • 15.

    Samplonius, J. M., Kappers, E. F., Brands, S. & Both, C. Phenological mismatch and ontogenetic diet shifts interactively affect offspring condition in a passerine. J. Anim. Ecol. 85, 1255–1264 (2016). Provides a strong test of the Cushing hypothesis by testing many confounding factors and key assumptions, thus showing that this hypothesis is relevant to a bird-caterpillar interaction.

    • Article
    • Google Scholar
  • 16.

    Hjort, J. Fluctuations in the great fisheries of northern Europe viewed in the light of biological research (ICES, 1914).

  • 17.

    Cushing, D. H. The regularity of the spawning season of some fishes. ICES J. Mar. Sci. 33, 81–92 (1969). Proposes the match-mismatch hypothesis to explain inter-annual variation in population recruitment of temperate fish species based on observations of their spawning periods.

    • Article
    • Google Scholar
  • 18.

    Cushing, D. H. The natural regulation of fish populations. HardenJones, F. R. (ed.) Sea Fisheries Research. Elek Science, 399–412 (1974).

  • 19.

    Cushing, D. H. Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. Adv. Mar. Biol. 26, 249–293 (1990).

    • Article
    • Google Scholar
  • 20.

    Miller-Rushing, A. J., Høye, T. T., Inouye, D. W. & Post, E. The effects of phenological mismatches on demography. Philos. T. Roy. Soc. B 365, 3177–3186 (2010).

    • Article
    • Google Scholar
  • 21.

    Renner, S. S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. S. 49, 165–182 (2018).

    • Article
    • Google Scholar
  • 22.

    Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–88 (2019).

    • Article
    • Google Scholar
  • 23.

    Arula, T., Gröger, J., Ojaveer, H. & Simm, M. Shifts in the spring herring (Clupea harengus membras) larvae and related environment in the Eastern Baltic Sea over the past 50 years. PLoS ONE 9, e91304 (2014). Tested for the presence of a shifting regime and its implications on the relative timing on a fish invertebrate interaction.

  • 24.

    Winder, M. & Schindler, D. E. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85, 2100–2106 (2004).

    • Article
    • Google Scholar
  • 25.

    Durant, J. M., Hjermann, D. Ø., Ottersen, G. & Stenseth, N. C. Climate and the match or mismatch between predator requirements and resource availability. Climate Res. 33, 271–283 (2007).

    • Article
    • Google Scholar
  • 26.

    Cury, P., Shannon, L. & Shin, Y. J. in Responsible fisheries in the marine ecosystem (eds Sinclair, M. & Valdimarsson, G.) 103–123 (FAO and CABI Publishing, 2003).

  • 27.

    Durant, J. M. et al. Timing and abundance as key mechanisms affecting trophic interactions in variable environments. Ecol. Lett. 8, 952–958 (2005).

    • Article
    • Google Scholar
  • 28.

    Johansson, J. & Jonzén, N. Game theory sheds new light on ecological responses to current climate change when phenology is historically mismatched. Ecol. Lett. 15, 881–888 (2012).

    • Article
    • Google Scholar
  • 29.

    Kerby, J., Wilmers, C. & Post, E. in Trait-mediated indirect interactions: ecological and evolutionary perspectives (eds Ohgushi, T. et al.) 508–525 (Cambridge Univ. Press, 2012).

  • 30.

    Kudo, G. & Ida, T. Y. Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology 94, 2311–2320 (2013).

    • Article
    • Google Scholar
  • 31.

    Leggett, W. & Deblois, E. Recruitment in marine fishes: is it regulated by starvation and predation in the egg and larval stages? Neth. J. Sea Res. 32, 119–134 (1994).

    • Article
    • Google Scholar
  • 32.

    Philippart, C. J. et al. Climate-related changes in recruitment of the bivalve Macoma balthica. Limnol. Oceanogr. 48, 2171–2185 (2003).

    • Article
    • Google Scholar
  • 33.

    Atkinson, A. et al. Questioning the role of phenology shifts and trophic mismatching in a planktonic food web. Prog. Oceanogr. 137, 498–512 (2015).

    • Article
    • Google Scholar
  • 34.

    Kerby, J. & Post, E. Capital and income breeding traits differentiate trophic match—mismatch dynamics in large herbivores. Philos. T. Roy. Soc. B 368, 20120484 (2013).

    • Article
    • Google Scholar
  • 35.

    Durant, J. M. et al. Extension of the match-mismatch hypothesis to predator-controlled systems. Mar. Ecol. Progr. Ser. 474, 43–52 (2013).

    • Article
    • Google Scholar
  • 36.

    Shurin, J. B., Gruner, D. S. & Hillebrand, H. All wet or dried up? Real differences between aquatic and terrestrial food webs. P. Roy. Soc. B-Biol. Sci. 273, 1–9 (2005).

    • Article
    • Google Scholar
  • 37.

    Carpenter, S. R. & Kitchell, J. F. The trophic cascade in lakes (Cambridge Univ. Press, 1996).

  • 38.

    Shurin, J. B. & Seabloom, E. W. The strength of trophic cascades across ecosystems: predictions from allometry and energetics. J. Anim. Ecol. 74, 1029–1038 (2005).

    • Article
    • Google Scholar
  • 39.

    Borer, E. T., Halpern, B. S. & Seabloom, E. W. Asymmetry in community regulation: effects of predators and productivity. Ecology 87, 2813–2820 (2006).

    • Article
    • Google Scholar
  • 40.

    Hampton, S. E., Scheuerell, M. D. & Schindler, D. E. Coalescence in the Lake Washington story: interaction strengths in a planktonic food web. Limnol. Oceanogr. 51, 2042–2051 (2006).

    • Article
    • Google Scholar
  • 41.

    Boggs, C. L. & Inouye, D. W. A single climate driver has direct and indirect effects on insect population dynamics. Ecol. Lett. 15, 502–508 (2012).

    • Article
    • Google Scholar
  • 42.

    Thackeray, S. J. Mismatch revisited: what is trophic mismatching from the perspective of the plankton? J. Plankton Res. 34, 1001–1010 (2012).

    • Article
    • Google Scholar
  • 43.

    Nakazawa, T. & Doi, H. A perspective on match/mismatch of phenology in community contexts. Oikos 121, 489–495 (2012).

    • Article
    • Google Scholar
  • 44.

    Revilla, T. A., Encinas-Viso, F. & Loreau, M. (A bit) Earlier or later is always better: phenological shifts in consumer—resource interactions. Theor. Ecol. 7, 149–162 (2014).

    • Article
    • Google Scholar
  • 45.

    Borer, E. et al. What determines the strength of a trophic cascade? Ecology 86, 528–537 (2005).

    • Article
    • Google Scholar
  • 46.

    Gruner, D. S. et al. A cross-system synthesis of consumer and nutrient resource control on producer biomass. Ecol. Lett. 11, 740–755 (2008).

    • Article
    • Google Scholar
  • 47.

    Betini, G. S., Avgar, T. & Fryxell, J. M. Why are we not evaluating multiple competing hypotheses in ecology and evolution? Roy. Soc. Open Sci. 4, 160756 (2017).

    • Article
    • Google Scholar
  • 48.

    Singer, M. C. & Parmesan, C. Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy? Philos. T. Roy. Soc. B 365, 3161–3176 (2010). Proposes that before climate change the fitness of some consumers may not have been at its maximum (i.e. asynchrony baseline) and that phenological mismatch due to climate change should not necessarily be the null hypothesis.

    • Article
    • Google Scholar
  • 49.

    Working Group I IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  • 50.

    Adrian, R., Wilhelm, S. & Gerten, D. Life-history traits of lake plankton species may govern their phenological response to climate warming. Glob. Change Biol. 12, 652–661 (2006).

    • Article
    • Google Scholar
  • 51.

    Wolkovich, E., Cook, B., McLauchlan, K. & Davies, T. Temporal ecology in the Anthropocene. Ecol. Lett. 17, 1365–1379 (2014).

  • 52.

    Edmondson, W. Sixty years of Lake Washington: a curriculum vitae. Lake Reserv. Manage. 10, 75–84 (1994).

    • Article
    • Google Scholar
  • 53.

    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).

  • 54.

    Ricciardi, A., Neves, R. J. & Rasmussen, J. B. Impending extinctions of North American freshwater mussels (Unionoida) following the zebra mussel (Dreissena polymorpha) invasion. J. Anim. Ecol. 67, 613–619 (1998).

    • Article
    • Google Scholar
  • 55.

    Fritts, T. H. & Rodda, G. H. The role of introduced species in the degradation of island ecosystems: a case history of Guam. Ann. Rev. Ecol. Syst. 29, 113–140 (1998).

    • Article
    • Google Scholar
  • 56.

    Verschuren, D. et al. History and timing of human impact on Lake Victoria, East Africa. P. Roy. Soc. Lond. B Bio. 269, 289–294 (2002).

    • Article
    • Google Scholar
  • 57.

    Visser, M. E., te Marvelde, L. & Lof, M. E. Adaptive phenological mismatches of birds and their food in a warming world. J. Ornith. 153, 75–84 (2012). Proposes that in some systems, life-history trade-offs will promote asynchrony for many or most individuals in a population and that maximum fitness does not occur at the resource peak (i.e. adaptive mismatch hypothesis).

    • Article
    • Google Scholar
  • 58.

    Wiklund, C. & Torbjörn, F. Why do males emerge before females? Oecologia 31, 153–158 (1977).

    • Article
    • Google Scholar
  • 59.

    Iwasa, Y. et al. Emergence patterns in male butterflies: A hypothesis and a test. Theor. Popul. Biol. 23, 363–379 (1983).

    • Article
    • Google Scholar
  • 60.

    Johansson, J., Smith, H. G. & Jonzén, N. Adaptation of reproductive phenology to climate change with ecological feedback via dominance hierarchies. J. Anim. Ecol. 83, 440–449 (2014).

    • Article
    • Google Scholar
  • 61.

    Thompson, J. N. The coevolutionary process (Univ. Chicago Press, 1994).

  • 62.

    Chmura, H. E. et al. The mechanisms of phenology: the patterns and processes of phenological shifts. Ecol. Monogr. 89, e01337 (2018).

    • Article
    • Google Scholar
  • 63.

    Bauerfeind, S. S. & Fischer, K. Increased temperature reduces herbivore host-plant quality. Glob. Change Biol. 19, 3272–3282 (2013).

    • Google Scholar
  • 64.

    Rudolf, V. H. & Singh, M. Disentangling climate change effects on species interactions: effects of temperature, phenological shifts, and body size. Oecologia 173, 1043–1052 (2013).

    • Article
    • Google Scholar
  • 65.

    Berger, S. A., Diehl, S., Stibor, H., Sebastian, P. & Scherz, A. Separating effects of climatic drivers and biotic feedbacks on seasonal plankton dynamics: no sign of trophic mismatch. Freshwater Biol. 59, 2204–2220 (2014).

    • Article
    • Google Scholar
  • 66.

    George, D. The effect of nutrient enrichment and changes in the weather on the abundance of Daphnia in Esthwaite Water, Cumbria. Freshwater Biol. 57, 360–372 (2012).

  • 67.

    Law, T., Zhang, W., Zhao, J. & Arhonditsis, G. B. Structural changes in lake functioning induced from nutrient loading and climate variability. Ecol. Model. 220, 979–997 (2009).

  • 68.

    Francis, T. B. et al. Shifting regimes and changing interactions in the Lake Washington, USA, plankton community from 1962–1994. PLoS ONE 9, e110363 (2014).

  • 69.

    Vatka, E., Rytkönen, S. & Orell, M. Does the temporal mismatch hypothesis match in boreal populations? Oecologia 176, 595–605 (2014).

    • Article
    • Google Scholar
  • 70.

    Holliday, N. Population ecology of winter moth (Operophtera brumata) on apple in relation to larval dispersal and time of bud burst. J. Appl. Ecol. 14, 803–813 (1977).

    • Article
    • Google Scholar
  • 71.

    Tikkanen, O.-P., Niemelä, P. & Keränen, J. Growth and development of a generalist insect herbivore, Operophtera brumata, on original and alternative host plants. Oecologia 122, 529–536 (2000).

    • Article
    • Google Scholar
  • 72.

    Wiltshire, K. H. et al. Resilience of North Sea phytoplankton spring bloom dynamics: an analysis of long-term data at Helgoland Roads. Limnol. Oceanogr. 53, 1294–1302 (2008).

    • Article
    • Google Scholar
  • 73.

    Henrich-Gebhardt, S. G. in Population Biology of Passerine Birds 175–185 (Springer-Verlag, 1990).

  • 74.

    Kelleri, L. F. & Van Noordwijk, A. J. Effects of local environmental conditions. Ardea 82, 349–362 (1994).

    • Google Scholar
  • 75.

    Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172 (2006).

    • Article
    • Google Scholar
  • 76.

    Yang, L. H. & Rudolf, V. H. W. Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol. Lett. 13, 1–10 (2010).

  • 77.

    Borcherding, J., Beeck, P., DeAngelis, D. L. & Scharf, W. R. Match or mismatch: the influence of phenology on size-dependent life history and divergence in population structure. J. Anim. Ecol. 79, 1101–1112 (2010).

    • Article
    • Google Scholar
  • 78.

    Gullett, P., Hatchwell, B. J., Robinson, R. A. & Evans, K. L. Phenological indices of avian reproduction: cryptic shifts and prediction across large spatial and temporal scales. Ecol. Evol. 3, 1864–1877 (2013).

    • Article
    • Google Scholar
  • 79.

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

  • 80.

    Sgardeli, V., Zografou, K. & Halley, J. M. Climate change versus ecological drift: assessing 13 years of turnover in a butterfly community. Basic Appl. Ecol. 17, 283–290 (2016).

    • Article
    • Google Scholar
  • 81.

    Pakanen, V.-M., Orell, M., Vatka, E., Rytkönen, S. & Broggi, J. Different ultimate factors define timing of breeding in two related species. PLoS ONE 11, e0162643 (2016).

  • 82.

    Lof, M. E., Reed, T. E., McNamara, J. M. & Visser, M. E. Timing in a fluctuating environment: environmental variability and asymmetric fitness curves can lead to adaptively mismatched avian reproduction. P. Roy. Soc. B-Biol. Sci. 279, 3161–3169 (2012).

    • Article
    • Google Scholar
  • 83.

    Rasmussen, N. L., Van Allen, B. G. & Rudolf, V. H. W. Linking phenological shifts to species interactions through size-mediated priority effects. J. Anim. Ecol. 83, 1206–1215 (2014).

    • Article
    • Google Scholar
  • 84.

    Chuine, I. & Régnière, J. Process-based models of phenology for plants and animals. Annu. Rev. Ecol. Evol. S. 48, 159–182 (2017).

    • Article
    • Google Scholar
  • 85.

    van Asch, M. & Visser, M. E. Phenology of forest caterpillars and their host trees: the importance of synchrony. Annu. Rev. Entomol. 52, 37–55 (2007).

  • 86.

    Tikkanen, O.-P. & Julkunen-Tiitto, R. Phenological variation as protection against defoliating insects: the case of Quercus robur and Operophtera brumata. Oecologia 136, 244–251 (2003).

    • Article
    • Google Scholar
  • 87.

    Visser, M. E., Van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Philos. Trans. R. Soc. Lond. B 265, 1867–1870 (1998).

    • Google Scholar
  • 88.

    Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population.Science 320, 800–803 (2008). Demonstrates that in this population of the great tit (Parus major) birds’ laying dates have remained synchronized with the timing of caterpillar emergence through phenotypic plasticity.

  • 89.

    Deacy, W. W. et al. Phenological synchronization disrupts trophic interactions between Kodiak brown bears and salmon. Proc. Natl Acad. Sci. USA 114, 10432–10437 (2017).

  • 90.

    Senner, N. R., Stager, M. & Sandercock, B. K. Ecological mismatches are moderated by local conditions for two populations of a long-distance migratory bird. Oikos 126, 61–72 (2017).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    The intensification of Arctic warming as a result of CO2 physiological forcing

    Accelerating invasion potential of disease vector Aedes aegypti under climate change