in

The influence of feeding behaviour and temperature on the capacity of mosquitoes to transmit malaria

  • 1.

    Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207–211 (2015).

  • 2.

    Churcher, T. S., Lissenden, N., Griffin, J. T., Worrall, E. & Ranson, H. The impact of pyrethroid resistance of the efficacy and effectiveness of bednets for malaria control in Africa. eLife 5, e16090 (2016).

  • 3.

    Ranson, H. & Lissenden, N. Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 32, 187–196 (2016).

    • CAS
    • Google Scholar
  • 4.

    Hemingway, J. et al. Averting a malaria disaster: will insecticide resistance derail malaria control? Lancet 387, 1785–1788 (2016).

  • 5.

    Moiroux, N. et al. Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J. Infect. Dis. 206, 1622–1629 (2012).

  • 6.

    Russell, T. et al. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar. J. 10, 80 (2011).

  • 7.

    Thomsen, E. K. et al. Mosquito behavior change after distribution of bednets results in decreased protection against malaria exposure. J. Infect. Dis. 215, 790–797 (2017).

    • PubMed
    • Google Scholar
  • 8.

    Carrasco, D. et al. Behavioural adaptations of mosquito vectors to insecticide control. Curr. Opin. Insect Sci. 34, 48–54 (2019).

    • PubMed
    • Google Scholar
  • 9.

    Protopopoff, N. et al. Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net and indoor residual spray interventions, separately and together, against malaria transmitted by pyrethroid-resistant mosquitoes: a cluster, randomised controlled, two-by-two factorial design trial. Lancet 391, 1577–1588 (2018).

  • 10.

    Uragayala, S. et al. Village-scale (phase III) evaluation of the efficacy and residual activity of SumiShield® 50 WG (Clothianidin 50%, w/w) for indoor spraying for the control of pyrethroid-resistant Anopheles culicifacies Giles in Karnataka State, India. Trop. Med. Int. Health 23, 605–615 (2018).

  • 11.

    Mashauri, F. M. et al. Indoor residual spraying with micro-encapsulated pirimiphos-methyl (Actellic® 300CS) against malaria vectors in the Lake Victoria basin, Tanzania. PLoS ONE 12, e0176982 (2017).

  • 12.

    Bayili, K. et al. Evaluation of efficacy of Interceptor® G2, a long-lasting insecticide net coated with a mixture of chlorfenapyr and alpha-cypermethrin, against pyrethroid resistant Anopheles gambiae s.l. in Burkina Faso. Malar. J. 16, 190 (2017).

  • 13.

    Tiono, A. B. et al. Efficacy of Olyset Duo, a bednet containing pyriproxyfen and permethrin, versus a permethrin-only net against clinical malaria in an area with highly pyrethroid-resistant vectors in rural Burkina Faso: a cluster-randomised controlled trial. Lancet 392, 569–580 (2018).

    • PubMed
    • Google Scholar
  • 14.

    Gatton, M. L. et al. The importance of mosquito behavioural adaptations to malaria control in Africa. Evolution 67, 1218–1230 (2013).

  • 15.

    Killeen, G. F. Characterizing, controlling and eliminating residual malaria transmission. Malar. J. 13, 330 (2014).

  • 16.

    Sherrard-Smith, E. et al. Mosquito feeding behavior and how it influences residual malaria transmission across Africa. Proc. Natl Acad. Sci. USA 116, 15086–15095 (2019).

  • 17.

    Durnez, L. & Coosemans, M. Residual Transmission of Malaria: an Old Issue for New Approaches (Intech, 2013).

  • 18.

    Lambrechts, L. Quantitative genetics of Aedes aegypti vector competence for Dengue viruses: towards a new paradigm? Trends Parasitol. 27, 111–114 (2011).

  • 19.

    Baton, L. A. & Ranford-Cartwright, L. C. Spreading the seeds of million-murdering death: metamorphoses of malaria in the mosquito. Trends Parasitol. 21, 573–580 (2005).

    • PubMed
    • Google Scholar
  • 20.

    Beier, J. C. Malaria parasite development in mosquitoes. Annu. Rev. Entomol. 43, 519–543 (1998).

  • 21.

    Lefevre, T., Vantaux, A., Dabire, K. R., Mouline, K. & Cohuet, A. Non-genetic determinants of mosquito competence for malaria parasites. PLoS Pathog. 9, e1003365 (2013).

  • 22.

    Westwood, M. L. et al. The evolutionary ecology of circadian rhythms in infection. Nat. Ecol. Evol. 3, 552–560 (2019).

    • PubMed
    • Google Scholar
  • 23.

    Rund, S. S. C., O’Donnell, A. J., Gentile, J. E. & Reece, S. E. Daily rhythms in mosquitoes and their consequences for malaria transmission. Insects 7, E14 (2016).

    • PubMed
    • Google Scholar
  • 24.

    Rund, S. S. C., Hou, T. Y., Ward, S. M., Collins, F. H. & Duffield, G. E. Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proc. Natl Acad. Sci. USA 108, E421–E430 (2011).

  • 25.

    Blanford, J. I. et al. Implications of temperature variation for malaria parasite development across Africa. Sci. Rep. 3, 1300 (2013).

  • 26.

    Glunt, K. D., Blanford, J. I. & Paaijmans, K. P. Chemicals, climate, and control: increasing the effectiveness of malaria vector control tools by considering relevant temperatures. PLoS Pathog. 9, e1003602 (2013).

  • 27.

    Paaijmans, K. P. et al. Downscaling reveals diverse effects of anthropogenic climate warming on the potential for local environments to support malaria transmission. Clim. Change 125, 479–488 (2014).

    • Google Scholar
  • 28.

    Thomas, S. et al. Microclimate variables of the ambient environment deliver the actual estimates of the extrinsic incubation period of Plasmodium vivax and Plasmodium falciparum: a study from a malaria-endemic urban setting, Chennai in India. Malar. J. 17, 201 (2018).

  • 29.

    Eling, W., Hooghof, J., van de Vegte-Bolmer, M., Sauerwein, R. & van Gemert, G.-J. Tropical temperatures can inhibit development of the human malaria parasite Plasmodium falciparum in the mosquito. Proc. Exp. Appl. Entomol. 12, 151–156 (2001).

    • Google Scholar
  • 30.

    Noden, B. H., Kent, M. D. & Beier, J. C. The impact of variations in temperature on early Plasmodium falciparum development in Anopheles stephensi. Parasitology 111, 539–545 (1995).

    • PubMed
    • Google Scholar
  • 31.

    Murdock, C. C., Moller-Jacobs, L. L. & Thomas, M. B. Complex environmental drivers of immunity and resistance in malaria mosquitoes. Proc. R. Soc. B Biol. Sci. 280, 20132030 (2013).

    • Google Scholar
  • 32.

    Gillies, M. T. & De Meillon, B. The Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region) 2nd edn (South African Institute for Medical Research, 1968).

  • 33.

    Paaijmans, K. P. et al. Influence of climate on malaria transmission depends on daily temperature variation. Proc. Natl Acad. Sci. USA 107, 15135–15139 (2010).

  • 34.

    Paaijmans, K. P., Read, A. F. & Thomas, M. B. Understanding the link between malaria risk and climate. Proc. Natl Acad. Sci. USA 106, 13844–13849 (2009).

  • 35.

    Ohm, J. R. et al. Rethinking the extrinsic incubation period of malaria parasites. Parasites Vectors 11, 178 (2018).

  • 36.

    Waite, J. L., Suh, E., Lynch, P. A. & Thomas, M. B. Exploring the lower thermal limits for development of the human malaria parasite, Plasmodium falciparum. Biol. Lett. 15, 20190275 (2019).

  • 37.

    Griffin, J. T. et al. Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med. 7, e1000324 (2010).

  • 38.

    White, M. T. et al. Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasites Vectors 4, 153 (2011).

  • 39.

    Griffin, J. T., Ferguson, N. M. & Ghani, A. C. Estimates of the changing age-burden of Plasmodium falciparum malaria disease in sub-Saharan Africa. Nat. Commun. 5, 3136 (2014).

  • 40.

    Griffin, J. T. et al. Gradual acquisition of immunity to severe malaria with increasing exposure. Proc. R. Soc. B Biol. Sci. 282, 20142657 (2015).

    • Google Scholar
  • 41.

    Killeen, G. F. et al. Made-to-measure malaria vector control strategies: rational design based on insecticide properties and coverage of blood resources for mosquitoes. Malar. J. 13, 146 (2014).

  • 42.

    Janko, M. M., Churcher, T. S., Emch, M. E. & Meshnick, S. R. Strengthening long-lasting insecticidal nets effectiveness monitoring using retrospective analysis of cross-sectional, population-based surveys across sub-Saharan Africa. Sci. Rep. 8, 17110 (2018).

  • 43.

    Kirby, M. J. & Lindsay, S. W. Responses of adult mosquitoes of two sibling species, Anopheles arabiensis and A. gambiae s.s. (Diptera: Culicidae), to high temperatures. Bull. Entomol. Res. 94, 441–448 (2004).

  • 44.

    Benoit, J. B. et al. Drinking a hot blood meal elicits a protective heat shock response in mosquitoes. Proc. Natl Acad. Sci. USA 108, 8026–8029 (2011).

  • 45.

    Lahondere, C. & Lazzari, C. R. Mosquitoes cool down during blood feeding to avoid overheating. Curr. Biol. 22, 40–45 (2012).

  • 46.

    Ferguson, H. M. et al. Selection of mosquito life-histories: a hidden weapon against malaria? Malar. J. 11, 106 (2012).

  • 47.

    Murdock, C. C., Paaijmans, K. P., Cox-Foster, D., Read, A. F. & Thomas, M. B. Rethinking vector immunology: the role of environmental temperature in shaping resistance. Nat. Rev. Microbiol. 10, 869–876 (2012).

  • 48.

    Murdock, C. C., Blanford, S., Hughes, G. L., Rasgon, J. L. & Thomas, M. B. Temperature alters Plasmodium blocking by Wolbachia. Sci. Rep. 4, 3932 (2014).

  • 49.

    Lyons, C. L., Coetzee, M., Terblanche, J. S. & Chown, S. L. Thermal limits of wild and laboratory strains of two African malaria vector species, Anopheles arabiensis and Anopheles funestus. Malar. J. 11, 226 (2012).

  • 50.

    Sternberg, E. D. & Thomas, M. B. Local adaptation to temperature and the implications for vector-borne diseases. Trends Parasitol. 30, 115–122 (2014).

    • PubMed
    • Google Scholar
  • 51.

    Siddons, L. B. Observations on the influence of atmospheric temperature and humidity on the infectivity of Anopheles culicifacies Giles. J. Malar. Inst. India 5, 375–388 (1944).

    • Google Scholar
  • 52.

    Knowles, R. & Basu, B. C. Laboratory studies on the infectivity of Anopheles stephensi. J. Malar. Inst. India 5, 1–29 (1943).

    • Google Scholar
  • 53.

    Okech, B. A. et al. Resistance of early midgut stages of natural Plasmodium falciparum parasites to high temperatures in experimentally infected Anopheles gambiae (Diptera: Culicidae). J. Parasitol. 90, 764–768 (2004).

    • PubMed
    • Google Scholar
  • 54.

    Bradley, J. et al. Predicting the likelihood and intensity of mosquito infection from sex specific Plasmodium falciparum gametocyte density. eLife 7, e34463 (2018).

  • 55.

    Pathak, A. K., Shiau, J. C., Thomas, M. B. & Murdock, C. Field relevant variation in ambient temperature modifies density-dependent establishment of Plasmodium falciparum gametocytes in mosquitoes. Front. Microbiol. 10, 2651 (2019).

  • 56.

    Schneider, P. et al. Adaptive plasticity in the gametocyte conversion rate of malaria parasites. PLoS Pathog. 14, e1007371 (2018).

  • 57.

    Schneider, P. et al. Adaptive periodicity in the infectivity of malaria gametocytes to mosquitoes. Proc. R. Soc. B Biol. Sci. 285, 20181876 (2018).

    • Google Scholar
  • 58.

    Githeko, A. K. et al. Confirmation that Plasmodium falciparum has asperiodic infectivity to Anopheles gambiae. Med. Vet. Entomol. 7, 373–376 (1993).

  • 59.

    Magesa, S. M., Mdira, Y. K., Akida, J. A., Bygbjerg, I. C. & Jakobsen, P. H. Observations on the periodicity of Plasmodium falciparum gametocytes in natural human infections. Acta Trop. 76, 239–246 (2000).

  • 60.

    Ferguson, H. M. et al. Ecology: a prerequisite for malaria elimination and eradication. PLoS Med. 7, e1000303 (2010).

  • 61.

    Thomas, M. B. et al. Lessons from agriculture for the sustainable management of malaria vectors. PLoS Med. 9, e1001262 (2012).

  • 62.

    Lefevre, T. et al. Transmission traits of malaria parasites within the mosquito: genetic variation, phenotypic plasticity, and consequences for control. Evol. Appl. 11, 456–469 (2018).

    • PubMed
    • Google Scholar
  • 63.

    Stratman-Thomas, W. K. The influence of temperature on Plasmodium vivax. Am. J. Trop. Med. Hyg. S1–S20, 703–715 (1940).

    • Google Scholar
  • 64.

    Ball, G. H. & Chao, J. Temperature stresses on the mosquito phase of Plasmodium relictum. J. Parasitol. 50, 748–752 (1964).

  • 65.

    Vanderberg, J. P. & Yoeli, M. Effects of temperature on sporogonic development of Plasmodium berghei. J. Parasitol. 52, 559–564 (1966).

  • 66.

    Simoes, M. L., Caragata, E. P. & Dimopoulos, G. Diverse host and restriction factors regulate mosquito–pathogen interactions. Trends Parasitol. 34, 603–616 (2018).

    • PubMed
    • Google Scholar
  • 67.

    Riehle, M. M. et al. Natural malaria infection in Anopheles gambiae is regulated by a single genomic control region. Science 312, 577–579 (2006).

  • 68.

    Molina-Cruz, A. et al. Plasmodium evasion of mosquito immunity and global malaria transmission: the lock-and-key theory. Proc. Natl Acad. Sci. USA 112, 15178–15183 (2015).

  • 69.

    Van Tol, S. & Dimopoulos, G. in Progress in Mosquito Research Vol. 51 (ed. Raikhel, A. S.) 243–291 (Academic Press and Elsevier Science, 2016).

  • 70.

    Wang, S. B. et al. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science 357, 1399–1402 (2017).

  • 71.

    Cirimotich, C. M. et al. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science 332, 855–858 (2011).

  • 72.

    Bugoro, H. et al. Bionomics of the malaria vector Anopheles farauti in Temotu Province, Solomon Islands: issues for malaria elimination. Malar. J. 10, 133 (2011).

  • 73.

    Geissbuhler, Y. et al. Interdependence of domestic malaria prevention measures and mosquito–human interactions in urban Dar es Salaam, Tanzania. Malar. J. 6, 126 (2007).

  • 74.

    Russell, T. L. et al. Frequent blood feeding enables insecticide-treated nets to reduce transmission by mosquitoes that bite predominately outdoors. Malar. J. 15, 156 (2016).

  • 75.

    Seyoum, A. et al. Human exposure to anopheline mosquitoes occurs primarily indoors, even for users of insecticide-treated nets in Luangwa Valley, South-East Zambia. Parasites Vectors 5, 101 (2012).

  • 76.

    Bayoh, M. N. et al. Persistently high estimates of late night, indoor exposure to malaria vectors despite high coverage of insecticide treated nets. Parasites Vectors 7, 380 (2014).

    • PubMed
    • Google Scholar
  • 77.

    Killeen, G. F. et al. Quantifying behavioural interactions between humans and mosquitoes: evaluating the protective efficacy of insecticidal nets against malaria transmission in rural Tanzania. BMC Infect. Dis. 6, 161 (2006).

  • 78.

    Mordecai, E. A. et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol. Lett. 16, 22–30 (2013).

    • PubMed
    • Google Scholar
  • 79.

    Shapiro, L. L. M., Murdock, C. C., Jacobs, G. R., Thomas, R. J. & Thomas, M. B. Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria. Proc. R. Soc. B Biol. Sci. 283, 20160298 (2016).

    • Google Scholar
  • 80.

    Parton, W. J. & Logan, J. A. A model for diurnal variation in soil and air temperature. Agric. Meteorol. 23, 205–216 (1981).

    • Google Scholar
  • 81.

    Detinova, T. Age-grouping methods in Diptera of medical importance with special reference to some vectors of malaria. Monogr. Ser. World Health Organ. 47, 13–91 (1962).

  • 82.

    Shapiro, L. L. M., Whitehead, S. A. & Thomas, M. B. Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS. Biol. 15, e2003489 (2017).

  • 83.

    Walker, P. G. T., Griffin, J. T., Ferguson, N. M. & Ghani, A. C. Estimating the most efficient allocation of interventions to achieve reductions in Plasmodium falciparum malaria burden and transmission in Africa: a modelling study. Lancet Glob. Health 4, E474–E484 (2016).

    • PubMed
    • Google Scholar
  • 84.

    Winskill, P., Slater, H. C., Griffin, J. T., Ghani, A. C. & Walker, P. G. T. The US President’s Malaria Initiative, Plasmodium falciparum transmission and mortality: a modelling study. PLoS Med. 14, e1002448 (2017).

  • 85.

    Slater, H. C., Walker, P. G. T., Bousema, T., Okell, L. C. & Ghani, A. C. The potential impact of adding ivermectin to a mass treatment intervention to reduce malaria transmission: a modelling study. J. Infect. Dis. 210, 1972–1980 (2014).

  • 86.

    Huho, B. et al. Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa. Int. J. Epidemiol. 42, 235–247 (2013).

  • 87.

    Wat’senga, F. et al. Nationwide insecticide resistance status and biting behaviour of malaria vector species in the Democratic Republic of Congo. Malar. J. 17, 129 (2018).

  • 88.

    Reddy, M. R. et al. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malar. J. 10, 184 (2011).

  • 89.

    Cooke, M. K. et al. ‘A bite before bed’: exposure to malaria vectors outside the times of net use in the highlands of western Kenya. Malar. J. 14, 259 (2015).

  • 90.

    Garske, T., Ferguson, N. M. & Ghani, A. C. Estimating air temperature and its influence on malaria transmission across Africa. PLoS ONE 8, e56487 (2013).

  • 91.

    West, B., Welch, K. & Galecki, A. Linear Mixed Models: a Practical Guide Using Statistical Software 2nd edn (Chapman & Hall, 2007).

  • 92.

    Gill, J. & King, G. What to do when your hessian is not invertible: alternatives to model respecification in nonlinear estimation. Sociol. Methods Res. 33, 54–87 (2004).

    • Google Scholar
  • 93.

    Suh, E. et al. Dryad Data from: The influence of feeding behaviour and temperature on the capacity of mosquitoes to transmit malaria. (Dryad Digital Repository, 2020); https://doi.org/10.5061/dryad.b2rbnzsb5


  • Source: Ecology - nature.com

    Hitchhiking, collapse, and contingency in phage infections of migrating bacterial populations

    Technique could enable cheaper fertilizer production