in

Soil invertebrate diversity loss and functional changes in temperate forest soils replaced by exotic pine plantations

  • 1.

    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science. 287, 1770–1774 (2000).

  • 2.

    Pereira, H. M. et al. Scenarios for Global Biodiversity in the 21st Century. Science. 330, 1496–1501 (2010).

  • 3.

    Miranda, A., Altamirano, A., Cayuela, L., Pincheira, F. & Lara, A. Different times, same story: Native forest loss and landscape homogenization in three physiographical areas of south-central of Chile. Applied Geography. 60, 20–28 (2015).

    • Article
    • Google Scholar
  • 4.

    FAO. Global Forest Resources Assessment 2015: How are the world’s forests changing? (Food and Agriculture Organization of the United Nations, 2015).

  • 5.

    Franco, A. L. et al. Loss of soil (macro) fauna due to the expansion of Brazilian sugarcane acreage. Science of the Total Environment. 563, 160–168 (2016).

  • 6.

    Mead, D. J. Sustainable management of Pinus radiata plantations. (Food and Agriculture Organization of the United Nations, 2013).

  • 7.

    Chapin, F. S. et al. Consequences of changing biodiversity. Nature. 405, 234–242 (2000).

  • 8.

    Ibarra, J. T. & Martin, K. Biotic homogenization: loss of avian functional richness and habitat specialists in disturbed Andean temperate forests. Biological Conservation. 192, 418–427 (2015).

    • Article
    • Google Scholar
  • 9.

    Mori, A. S. et al. Biotic homogenization and differentiation of soil faunal communities in the production forest landscape: taxonomic and functional perspectives. Oecologia. 177, 533–544 (2015).

  • 10.

    Olden, J. D. & Rooney, T. P. On defining and quantifying biotic homogenization. Global Ecology and Biogeography. 15, 113–120 (2006).

    • Article
    • Google Scholar
  • 11.

    Hobbs, R. J., Higgs, E. S. & Hall, C. (eds.) Novel ecosystems: intervening in the new ecological world order (John Wiley & Sons, 2013).

  • 12.

    Espinosa, M., Acuna, E., Cancino, J., Munoz, F. & Perry, D. A. Carbon sink potential of radiata pine plantations in Chile. Forestry. 78, 11–19 (2005).

    • Article
    • Google Scholar
  • 13.

    INFOR. Anuario Forestal 2016, Chilean Statistical Yearbook of Forestry. 1–154 (2016).

  • 14.

    Wright, J. P. & Jones, C. G. Predicting effects of ecosystem engineers on patch-scale species richness from primary productivity. Ecology. 85, 2071–2081 (2004).

    • Article
    • Google Scholar
  • 15.

    Bardgett, R. D. & Wardle, D. A. (eds.) Aboveground-belowground linkages: biotic interactions, ecosystem processes and global change. (Oxford University Press, 2010).

  • 16.

    Crisp, P. N., Dickinson, K. J. M. & Gibbs, G. W. Does native invertebrate diversity reflect native plant diversity? A case study from New Zealand and implications for conservation. Biological Conservation. 83, 209–220 (1998).

    • Article
    • Google Scholar
  • 17.

    Siemann, E., Tilman, D., Haarstad, J. & Ritchie, M. Experimental tests of the dependence of arthropod diversity on plant diversity. American Naturalist. 152, 738–750 (1998).

  • 18.

    De Deyn, G. B., Raaijmakers, C. E., Zoomer, H. R. & Berg, M. P. Soil invertebrate fauna enhances grassland succession and diversity. Nature. 422, 711 (2003).

  • 19.

    Aerts, R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos. 79, 439–449 (1997).

    • Article
    • Google Scholar
  • 20.

    Cornelissen, J. H. et al. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. The New Phytologist. 143, 191–200 (1999).

    • Article
    • Google Scholar
  • 21.

    Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science. 320, 1444–1449 (2008).

  • 22.

    Chirino, I., Condron, L. M., McLenaghen, R. D. & Davis, M. Effects of plantation forest species on soil properties in Soil Solutions for a Changing World: Proceedings of the 19th World Congress of Soil Science (eds. Gilkes, R. & Prakongkep, N.) 1–6 (Brisbane, Australia ed., 2010).

  • 23.

    Díaz, S. et al. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (IPBES secretariat, 2019).

  • 24.

    Lavelle, P. et al. Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Biology. 33, 159–193 (1997).

    • CAS
    • Google Scholar
  • 25.

    Heneghan, L., Coleman, D. C., Zou, X., Crossley, D. A. & Haines, B. L. Soil microarthropod contributions to decomposition dynamics: Tropical-temperate comparisons of a single substrate. Ecology. 80, 1873–1882 (1999).

    • Google Scholar
  • 26.

    Echeverría, C. et al. Rapid deforestation and fragmentation of Chilean temperate forests. Biological conservation. 130, 481–494 (2006).

    • Article
    • Google Scholar
  • 27.

    Lavelle, P. et al. Soil invertebrates and ecosystem services. European journal of soil biology. 42, 3–15 (2006).

    • Article
    • Google Scholar
  • 28.

    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science. 304, 1623–1627 (2004).

  • 29.

    Singh, S., Davey, S. & Cole, M. Implications of climate change for forests, vegetation and carbon in Australia. New Zealand. Journal of Forestry Science. 40, 141–152 (2010).

    • Google Scholar
  • 30.

    Cruz, M., de Mar, P. & Adshead, D. Radiata pine plantation fuel and fire behaviour guide. GHD, www.ghd.com/PDF/PinusRadiataFuelandFireGuide.pdf (2011).

  • 31.

    Turner, J. & Lambert, M. J. Soil properties as affected by Pinus radiata plantations. New Zealand. Journal of Forestry Science. 18, 77–91 (1988).

    • Google Scholar
  • 32.

    Chapela, I. H., Osher, L. J., Horton, T. R. & Henn, M. R. Ectomycorrhizal fungi introduced with exotic pine plantations induce soil carbon depletion. Soil Biology &. Biochemistry. 33, 1733–1740 (2001).

    • CAS
    • Google Scholar
  • 33.

    Berthrong, S. T., Jobbàgy, E. G. & Jackson, R. B. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecological Applications. 19, 2228–2241 (2009).

  • 34.

    Oyarzún, C. E., Frêne, C., Lacrampe, G., Huber, A. & Hervé, P. Propiedades hidrológicas del suelo y exportación de sedimentos en dos microcuencas de la Cordillera de la Costa en el sur de Chile con diferente cobertura vegetal. Bosque. 32, 10–19 (2011).

    • Article
    • Google Scholar
  • 35.

    Hess, L. J. T. & Austin, A. T. Pine afforestation alters rhizosphere effects and soil nutrient turnover across a precipitation gradient in Patagonia, Argentina. Plant and Soil. 415, 449–464 (2017).

  • 36.

    Quiroz, I. et al. Evaluación y análisis de los métodos de regeneración aplicados en el tipo forestal roble-raulí-coigüe de la precordillera de los Andes de las regiones del Bío Bío y la Araucanía. Bosque Nativo. INFOR-MINAGRI. (2011).

  • 37.

    Armesto, J. J. et al. Conifer forests of the Chilean coastal range in Ecology of the Southern Conifers (eds. Enright, N. J. & Hill, R. S.) 156-170 (Melbourne University Press, 1995).

  • 38.

    Smith-Ramírez, C. The Chilean coastal range: a vanishing center of biodiversity and endemism in South American temperate rainforests. Biodiversity & Conservation. 13, 373–393 (2004).

    • Article
    • Google Scholar
  • 39.

    San Martín, J. & Donoso, C. Floristic structure and human impact on the Maulino forest of Chile in Ecología de los bosques nativos de Chile (eds. Armesto, J. J., Villagrán, C & Arroyo, M. K.) 153–167 (Editorial Universitaria, 1995).

  • 40.

    Bustamante, R. O., Simonetti, J. A., Grez, A. A. & San Martín, J. Fragmentación y dinámica de regeneración del bosque maulino: diagnóstico actual y perspectivas futuras in Historia, biodiversidad y ecología de los bosques costeros de Chile (eds. Smith-Ramírez, C., Armesto J. J. & Valdovinos, C.) 555–564 (Editorial Universitaria, 2005).

  • 41.

    San Martín, J. Floristic and vegetative structure of the Nothofagus alpina (Fagaceae) remanent forest of the Coastal Range, central Chile. Bosque. 24, 71–85 (2003).

    • Article
    • Google Scholar
  • 42.

    Magura, T. Carabids and forest edge: spatial pattern and edge effect. Forest Ecology and Management. 157, 23–37 (2002).

    • Article
    • Google Scholar
  • 43.

    Van der Maarel, E. Transformation of cover-abundance values for appropriate numerical treatment–Alternatives to the proposals by Podani. Journal of Vegetation Science. 18, 767–770 (2007).

    • Google Scholar
  • 44.

    Franzluebbers, A. J. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil & Tillage Research. 66, 197–205 (2002).

    • Article
    • Google Scholar
  • 45.

    Basset, Y., Hammond, P. M., Barrios, H., Holloway, J. D. & Miller, S. E. Vertical stratification of arthropod assemblages in Arthropods of tropical forests (eds. Basset, I., Novotny, V., Miller, S. & Kitching, R.) 17–27 (Cambridge University Press, 2003).

  • 46.

    Martínez, R. I. & Casanueva, M. E. Comparación cuali-cuantitativa de la fauna oribatológica de suelo (Acari y Oribatida) de bosques nativos y Pinus radiata. Revista Chilena de Entomología. 22, 25–34 (1995).

    • Google Scholar
  • 47.

    Borkent, A. & Wirth, W. W. World species of biting midges (Diptera: Ceratopogonidae). New York: American Museum of Natural History. 1-245 (1997).

  • 48.

    Rusek, J. Biodiversity of Collembola and their functional role in the ecosystem. Biodiversity and Conservation. 7, 1207–1219 (1998).

    • Article
    • Google Scholar
  • 49.

    Covarrubias, R. & Contreras, A. Variación en los microartrópodos del suelo, por manejos forestales de raleo selectivo y cortes en hoyos de luz. Bosque. 25, 103–116 (2004).

    • Article
    • Google Scholar
  • 50.

    Jerez, V. & Moroni, J. Diversidad de coleópteros acuáticos en Chile. Gayana. 70, 72–81 (2006).

    • Google Scholar
  • 51.

    Milcu, A., Partsch, S., Langel, R. & Scheu, S. The response of decomposers (earthworms, springtails and microorganisms) to variations in species and functional group diversity of plants. Oikos. 112, 513–524 (2006).

    • Article
    • Google Scholar
  • 52.

    Thyssen, P.J. Keys for identification of immature insects in Current concepts in Forensic entomology. (eds. Amendt, J., Goff, M. L., Campobasso, C. P. & Grassberger, M.) 25–42 (Springer, 2009).

  • 53.

    Eisenhauer, N., Sabais, A. C. & Scheu, S. Collembola species composition and diversity effects on ecosystem functioning vary with plant functional group identity. Soil Biology and Biochemistry. 43, 1697–1704 (2011).

  • 54.

    Cabrera, G. Manual práctico sobre la macrofauna edáfica como indicador biológico de la calidad del suelo, según resultados en Cuba. Rufford Foundation (RSGF para la Conservación de la Naturaleza, 2014).

  • 55.

    Covarrubias, R. Comparación de ácaros oribátidos (acarina: oribatida) bajo las mismas especies de plantas de altura, en las cordilleras de los andes y de la costa. Chile central. Revista Chilena de Entomología. 35, 71–82 (2017).

    • Google Scholar
  • 56.

    Fisher, R. A., Corbet, A. S. & Williams, C. B. The relation between the number of species and the number of individuals in a random sample of animal population. Journal of Animal Ecology. 12, 42–58 (1943).

    • Article
    • Google Scholar
  • 57.

    Colwell, R. K., Mao, C. X. & Chang, J. Interpolating, extrapolating, and comparing incidence‐based species accumulation curves. Ecology. 85, 2717–2727 (2004).

    • Article
    • Google Scholar
  • 58.

    Colwell, R. K. & Coddington, J. A. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions: Biological Sciences. 345, 101–118 (1994).

  • 59.

    RCore Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2015).

  • 60.

    Huber, A., Iroume, A. & Bathurst, J. Effect of Pinus radiata plantations on water balance in Chile. Hydrological Processes. 22, 142–148 (2008).

  • 61.

    Oyarzún, C. E. & Herve-Fernandez, P. Ecohidrology and Nutrient Fluxes in Forest Ecosystems of Southern Chile in Biodiversity in ecosystems structure- Linking structure and function (eds. Lo, Y., Blanco, J. & Roy, S.) 335–352 (Intech, 2015).

  • 62.

    Brand, D. G., Kehoe, P. & Connors, M. Coniferous afforestation leads to soil acidification in central ontario. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere. 16, 1389–1391 (1986).

    • Article
    • Google Scholar
  • 63.

    Alfredsson, H., Condron, L. M., Clarholm, M. & Davis, M. R. Changes in soil acidity and organic matter following the establishment of conifers on former grassland in New Zealand. Forest Ecology and Management. 112, 245–252 (1998).

    • Article
    • Google Scholar
  • 64.

    Richter, D. D. & Markewitz, D. How deep is soil? Bioscience. 45, 600–609 (1995).

    • Article
    • Google Scholar
  • 65.

    Loranger, G., Bandyopadhyaya, I., Razaka, B. & Ponge, J. F. Does soil acidity explain altitudinal sequences in collembolan communities? Soil Biology & Biochemistry. 33, 381–393 (2001).

  • 66.

    Augusto, L., Ranger, J., Binkley, D. & Rothe, A. Impact of several common tree species of European temperate forests on soil fertility. Annals of Forest Science. 59, 233–253 (2002).

    • Article
    • Google Scholar
  • 67.

    Hyvönen, R. & Persson, T. Effects of acidification and liming on feeding groups of nematodes in coniferous forest soils. Biology and Fertility of Soils. 9, 205–210 (1990).

    • Article
    • Google Scholar
  • 68.

    Van Straalen, N. M. & Verhoef, H. A. The development of a bioindicator system for soil acidity based on arthropod pH preferences. Journal of Applied Ecology. 34, 217–232 (1997).

    • Article
    • Google Scholar
  • 69.

    Van Straalen, N. M. Evaluation of bioindicator systems derived from soil arthropod communities. Applied Soil Ecology. 9, 429–437 (1998).

    • Article
    • Google Scholar
  • 70.

    Estades, C. F. & Escobar, M. A. Los ecosistemas de las plantaciones de pino de la Cordillera de la Costa in Historia, biodiversidad y ecología de los bosques costeros de Chile (eds. Smith-Ramirez, C., Armesto, J. J. & Valdovinos, C.) 600–616 (Editorial Universitaria, 2005).

  • 71.

    Briones, R. & Jerez, V. Efecto de la edad de la plantación de Pinus radiata en la abundancia de Ceroglossus chilensis (Coleoptera: Carabidae) en la Región del Biobío, Chile. Bosque. 28, 207–214 (2007).

    • Article
    • Google Scholar
  • 72.

    Cerda, Y., Grez, A. A. & Simonetti, J. A. The role of the understory on the abundance, movement and survival of Ceroglossus chilensis in pine plantations: an experimental test. Journal of Insect Conservation. 19, 119–127 (2015).

    • Article
    • Google Scholar
  • 73.

    Fierro, A., Grez, A. A., Vergara, P. M., Ramírez-Hernández, A. & Micó, E. How does the replacement of native forest by exotic forest plantations affect the diversity, abundance and trophic structure of saproxylic beetle assemblages? Forest Ecology and Management. 405, 246–256 (2017).

    • Article
    • Google Scholar
  • 74.

    Grez, A. A., Moreno, P. & Elgueta, M. Coleópteros (Insecta: Coleoptera) epígeos asociados al bosque maulino y plantaciones de pino aledañas. Revista Chilena de Entomología. 29, 9–18 (2003).

    • Google Scholar
  • 75.

    Doube, B. & Schmidt, O. Can the abundance or activity of soil macrofauna be used to indicate the biological health of soils? in Biological Indicators of Soil Health (ed. Pankhurst, C. E) 265–295 (CAB International, 1997).

  • 76.

    Borer, E. T., Briggs, C. J., Murdoch, W. W. & Swarbrick, S. L. Testing intraguild predation theory in a field system: does numerical dominance shift along a gradient of productivity? Ecology Letters. 6, 929–935 (2003).

    • Article
    • Google Scholar
  • 77.

    Arim, M., Marquet, P. A. & Jaksic, F. M. On the relationship between productivity and food chain length at different ecological levels. The Am. Nat. 169, 62–72 (2006).

  • 78.

    Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology Evolution and Systematics. 35, 557–581 (2004).

    • Article
    • Google Scholar
  • 79.

    Chazdon, R. L. et al. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio. 45, 538–550 (2016).

  • 80.

    Pickett, S. T. A. & Cadenasso, M. L. The ecosystem as a multidimensional concept: Meaning, model, and metaphor. Ecosystems. 5, 1–10 (2002).

    • Article
    • Google Scholar
  • 81.

    Aslam, T. J., Benton, T. G., Nielsen, U. N. & Johnson, S. N. Impacts of eucalypt plantation management on soil faunal communities and nutrient bioavailability: trading function for dependence? Biology and Fertility of Soils. 51, 637–644 (2015).

    • Article
    • Google Scholar
  • 82.

    Naudts, K. et al. Europe’s forest management did not mitigate climate warming. Science. 351, 597–600 (2016).

  • 83.

    Lindenmayer, D. B. & Franklin, J. F. Conserving forest biodiversity: a comprehensive multiscaled approach. (Island Press, 2002).

  • 84.

    Lindenmayer, D. B. et al. Interacting factors driving a major loss of large trees with cavities in a forest ecosystem. Plos One. 7, e41864 (2012).

  • 85.

    Horák, J. et al. Green desert?: Biodiversity patterns in forest plantations. Forest ecology and management. 433, 343–348 (2019).

    • Article
    • Google Scholar
  • 86.

    Benra, F. et al. Ecosystem services tradeoffs arising from non-native tree plantation expansion in southern Chile. Landscape and Urban Planning. 190, 103589 (2019).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Drought and climate change impacts on cooling water shortages and electricity prices in Great Britain

    Kerry Emanuel, David Sabatini, and Peter Shor receive BBVA Frontiers of Knowledge awards