in

Assessment of soil fertility and potato crop nutrient status in central and eastern highlands of Kenya

  • 1.

    Jonas, N. C., Justina, N. C. & Mairura, F. Mineral fertilizers in the farming systems of sub-Saharan Africa. A review. Agron. Sustain. Dev. 32, 545–566 (2012).

    • Article
    • Google Scholar
  • 2.

    Bationo, A. Managing nutrient cycles to sustain soil fertility in sub Saharan Africa. afnet-ciat 53 (2004).

  • 3.

    Burton, A. Influence of Solution Management Techniques on Nutrient Use Efficiency in Hydroponically Grown Salad-type Plants. proquest (2018).

  • 4.

    Gitari, H. I. et al. Optimizing yield and economic returns of rain-fed potato (Solanum tuberosum L.) through water conservation under potato-legume intercropping systems. Agric. Water Manag 208, 59–66 (2018).

    • Article
    • Google Scholar
  • 5.

    Obare, G., Nyagaka, D., Nguyo, W. & Mwakubo, S. M. Are Kenyan smallholders allocatively efficient? Evidence from Irish potato producers in Nyandarua North district. J. Dev. Agric. Econ. 2, 78–85 (2010).

    • Google Scholar
  • 6.

    Honeycutt, C. W., Clapham, W. M. & Leach, S. S. Crop rotation and N fertilization effects on growth, yield, and disease incidence in potato. Am. Potato J 73, 45–61 (1996).

    • Article
    • Google Scholar
  • 7.

    Trehan, S. P., Pandey, S. K. & Bansal, S. Potassium Nutrition of the Potato Crop – the Indian Scenario. e-ifc (2009).

  • 8.

    Burke, J. J. Growing the Potato crop. Vita (Vita, 2016).

  • 9.

    Muthoni, J. & Nyamongo, D. O. A review of constraints to ware Irish potatoes production in Kenya. Forestry 1, 98–102 (2009).

    • Google Scholar
  • 10.

    Muthoni, J. Soil fertility situation in potato producing Kenyan highlands -case of KALRO-Tigoni. Int. J. Hortic. 6 (2016).

  • 11.

    Kaguongo, W. et al. Farmer practices and adoption of improved potato varieties in kenya and uganda. Social Sciences 5 (2008).

  • 12.

    Ogola, J. B. O., Ayieko, M. W., Orawo, A. O. & Kimani, F. W. Analysis of fertiliser use in potato production in Nakuru district, Kenya. J. Agric. Res 6, 3672–3677 (2011).

    • Google Scholar
  • 13.

    Nyawade, S. O. Effect of potato (Solanum tuberosum L.) cropping system on soil and nutrient losses through run-off in humic nitisol. (2015).

  • 14.

    Fageria, N. K. & Zimmermann, F. J. P. Influence of pH on growth and nutrient uptake by crop species in an Oxisol. Commun. Soil Sci. Plant Anal. 29, 2675–2682 (1998).

  • 15.

    IPNI. Soil pH and the availability of plant nutrients. fall 2, 3535 (2010).

    • Google Scholar
  • 16.

    Westermann, D. Nutritional requirements of potatoes. Am. J. Potato Res 82, 301–307 (2005).

  • 17.

    Wekesa, M. N., Okoth, M. W., Abong, G. O., Muthoni, J. & Kabira, J. N. Effect of Soil Characteristics on Potato Tuber Minerals Composition of Selected Kenyan Varieties. J. Agric. Sci 6, 163–171 (2014).

    • Google Scholar
  • 18.

    Kihara, J. et al. Application of secondary nutrients and micronutrients increases crop yields in sub-Saharan Africa. Agron. Sustain. Dev. 37, 25 (2017).

    • Article
    • Google Scholar
  • 19.

    Rosen, C. J. Nutrient Management for Potato Production. University of minnesota extension (2015).

  • 20.

    Hiddink, J. G. & Kaiser, M. J. Implications of Liebig’s law of the minimum for the use of ecological indicators based on abundance. Ecography (Cop.). 28, 264–271 (2005).

    • Article
    • Google Scholar
  • 21.

    Roy, R. N., Finck, A., Blair, G. J. & Tandon, H. L. S. Plant nutrition for food security; a guide for integrated nutrient management. (2006).

  • 22.

    Roy, R. N., Misra, R. V., Lesschen, J. P. & Smaling, E. M. Assessment of Soil Nutrient Balance: Approaches and Methodologies. FAO Fertilizer and Plant Nutrition Bulletin 14 (2003).

  • 23.

    Munson, R. D. & Nelson, W. L. Principles and practices in plant analysis. Princ. Pract. plant Anal. 359–388 (1990).

  • 24.

    Mangale, N. et al. Manual for Integrated Soil Fertility Management in Kenya. (2016).

  • 25.

    Schulte, E. E., Kelling, K. A., Schulte, E.E. & Kelling, K. A. Plant analysis: a diagnostic tool. Crop Fertil. (2005).

  • 26.

    Motsara, M. & Roy, R. Guide to laboratory establishment for plant nutrient analysis. (2008).

  • 27.

    Reuter, D. J., Robinson, J. B. & Dutkiewicz, C. Plant analysis: an interpretation manual. csiro (CSIRO Pub, 1997).

  • 28.

    Reis, R. D. A. Jr. & Monnerat, P. H. Nutrient concentrations in potato stem, petiole and leaflet in response to potassium fertilizer. Sci. Agric. 57, 251–255 (2000).

    • Article
    • Google Scholar
  • 29.

    Kaiser, D. E., Lamb, J. A. & Rosen, C. Plant Analysis Sampling and Interpretation. university of minnesota extension (2013).

  • 30.

    Landon, J. R. Booker Tropical Soil Manual: A handbook for soil survey and agricultural land evaluation in the tropics and subtropics. (1991).

  • 31.

    Shukla, M. K., Lal, R. & Ebinger, M. Determining soil quality indicators by factor analysis. Soil Tillage Res 87, 194–204 (2006).

    • Article
    • Google Scholar
  • 32.

    Harou, A. P. et al. Can information improve investment? Effects of site-specific soil recommendations on fertilizer demand. (2018).

  • 33.

    Fairhurst, T. Handbook for Integrated soil Fertility Management. 151 (2012).

  • 34.

    Jaetzold, R., Schmidt, H., Hornetz, B. & Shisanya, C. Farm management handbook of Kenya – Subpart C1. II (2006).

  • 35.

    Mylavarapu, R. S., Sanchez, J. F., Nguyen, J. H. & Bartos, J. M. Evaluation of Mehlich-1 and Mehlich-3 extraction procedures for plant nutrients in acid mineral soils of Florida. Commun. Soil Sci. Plant Anal. 33, 807–820 (2002).

  • 36.

    Hou, X. & Jones, B. T. Inductively Coupled Plasma–Optical Emission Spectrometry. Spectroscopy Letters 42, 58–61 (2000).

    • Google Scholar
  • 37.

    Houba, V. J. G., Temminghoff, E. J. M., Gaikhorst, G. A. & Van Vark, W. Soil Analysis Procedures Using 0.01 M Calcium Chloride as Extraction Reagent. Commun Soil Sci Plantanal 31, 1299–1396 (2000).

  • 38.

    Westerman, R. L., Jones, J. B. & Case, V. W. Sampling, Handling, and Analyzing Plant Tissue Samples. in Soil Testing and Plant Analysis sssabookseries, 389–427 (Soil Science Society of America, 1990).

  • 39.

    Gachene, C. K. K. & Kimaru, G. G. Soil fertility and land productivity: a guide for extension workers in the eastern africa region. Relma handbook series (Regional Land Management Unit, 2003).

  • 40.

    FAO. Lecture Notes on the Major Soils of the World: Cambisols (CM). FAO Corporate Document Repository (2014), http://www.fao.org/docrep/003/Y1899E/y1899e12.htm. (Accessed: 19th December 2017).

  • 41.

    Ruttenberg, K. C. Phosphorus Cycle. Encycl. Ocean Sci. 401–412, (2001). https://doi.org/10.1016/B978-012374473-9.00277-0.

  • 42.

    Cui, X., Zhang, Y., Gao, J., Peng, F. & Gao, P. Long-term combined application of manure and chemical fertilizer sustained higher nutrient status and rhizospheric bacterial diversity in reddish paddy soil of Central South China. Sci. Rep 8, 16554 (2018).

  • 43.

    Goulding, K. W. T. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil use Manag 32, 390–399 (2016).

  • 44.

    Bingham, A. H. & Cotrufo, M. F. Organic nitrogen storage in mineral soil: Implications for policy and management. Sci. Total Environ. 551–552, 116–126 (2016).

  • 45.

    Lamb, J. A., Fernandez, F. G. & Kaiser, D. E. Understanding nitrogen in soils. Univ. Florida, IFAS Ext. 1–5 (2014).

  • 46.

    Moulin, A. P., Cohen, Y., Alchanatis, V., Tremblay, N. & Volkmar, K. Yield response of potatoes to variable nitrogen management by landform element and in relation to petiole nitrogen – A case study. Can. J. Plant Sci. 92, 771–781 (2012).

    • Article
    • Google Scholar
  • 47.

    Mohler, C. L. & Johnson, S. E. Crop Rotation on Organic Farms: A Planning Manual . Engineering (2009).

  • 48.

    Mnthambala, F., James, H. A. M., Max, W. L. & Venon, H. K. Soil management effects on phosphorus sorption and external P requirement in oxisols of Malawi. J. Soil Sci. Environ. Manag. 7, 106–114 (2016).

  • 49.

    Shen, J. et al. Phosphorus Dynamics: From Soil to Plant. Plant Physiol. 156, 997–1005 (2011).

  • 50.

    Haygarth, P. M., Hepworth, L. & Jarvis, S. C. Forms of phosphorus transfer in hydrological pathways from soil under grazed grassland. Eur. J. Soil Sci. (United Kingdom) (1998).

  • 51.

    Fisher, M. Sub-soil phosphorus loss: A complex problem with no easy solutions. CSA News 60, 4 (2015).

    • Google Scholar
  • 52.

    Nyawade, S. et al. Controlling soil erosion in smallholder potato farming systems using legume intercrops. Geoderma Reg. e00225, (2019). https://doi.org/10.1016/j.geodrs.2019.e00225.

  • 53.

    Laekemariam, F., Kibret, K. & Shiferaw, H. Potassium (K)-to-magnesium (Mg) ratio, its spatial variability and implications to potential Mg-induced K deficiency in Nitisols of Southern Ethiopia. Agric. Food Secur 7, 13 (2018).

    • Article
    • Google Scholar
  • 54.

    Koch, M., Naumann, M., Pawelzik, E., Gransee, A. & Thiel, H. The Importance of Nutrient Management for Potato Production Part I: Plant Nutrition and Yield. Potato Res. 1–23, (2019). https://doi.org/10.1007/s11540-019-09431-2.

  • 55.

    IPNI. Potassium availability and uptake. Better Crop 82, 14–15 (1998).

  • 56.

    Havlin, J. L. Fertility. in Reference Module in Earth Systems and Environmental Sciences, https://doi.org/10.1016/B978-0-12-409548-9.05162-9 (Elsevier, 2013).

  • 57.

    Sharma, D. K., Kushwah, S. S., Nema, P. K. & Rathore, S. S. Effect of Sulphur on Yield and Quality of Potato (Solanum tuberosum L.). Int. J. Agric. Res. 6, 143–148 (2011).

    • Article
    • Google Scholar
  • 58.

    Kenya Soil Survey. Soil suitability evaluation for maize production in Kenya. (2014).

  • 59.

    Singh, H., Sharma, M., Goyal, A. & Bansal, M. Effect of Nitrogen and Sulphur on Growth and Yield Attributes of Potato (Solanum tuberosum L.). Int. J. Plant Soil Sci. 9, 1–8 (2016).

    • Article
    • Google Scholar
  • 60.

    Muthoni, J., Shimelis, H. & Melis, R. Potato Production in Kenya: Farming Systems and Production Constraints. J. Agric. Sci. 5, 182–197 (2013).

    • Google Scholar
  • 61.

    Jones, C., Olson-rutz, K. & McCauley, A. Soil pH and Organic Matter. Montana state university -extension 1–16 (2017).

  • 62.

    Ahmad, W., Zia, M. H., Malhi, S. S. & Niaz, A. Boron Deficiency in Soils and Crops: A Review. Crop Plant 78–117 (2012).

  • 63.

    Morgan, J. B. & Connolly, E. L. Plant-Soil Interactions: Nutrient Uptake. Nat. Educ. Knowl 4, 2 (2013).

    • Google Scholar
  • 64.

    Gitari, H. I. et al. Nitrogen and phosphorous uptake by potato (Solanum tuberosum L.) and their use efficiency under potato-legume intercropping systems. F. Crop. Res 222, 78–84 (2018).

    • Article
    • Google Scholar
  • 65.

    Kolbe, H. & Stephan-Beckmann, S. Development, growth and chemical composition of the potato crop (Solanum tuberosum L.). I. leaf and stem. Potato Res. 40, 111–129 (1997).

    • Article
    • Google Scholar
  • 66.

    Korkmaz, K., Dede, Ö., Erdem, H., Çankaya, S. & Akgün, M. Relationships between chemical and physical properties of soils and nutrient status of plants on yield of potato. Fresenius Environ. Bull. 24, 4108–4113 (2015).

    • CAS
    • Google Scholar
  • 67.

    Tariq, M. & Mott, C. J. B. The Significance of Boron in Plant Nutrition and Environment-A Review. J. Agron. 6, 1–10 (2007).

  • 68.

    Azeez, M., Adesanwo, O. O. & Adepetu, J. A. Effect of Copper (Cu) application on soil available nutrients and uptake. African. J. Agric. Res. 10, 359–364 (2015).

    • CAS
    • Google Scholar
  • 69.

    Arora, C. L. & Sekhon, G. S. The effect of soil characteristics on the zinc-copper interaction in the nutrition of wheat. J. Agric. Sci. 99, 185–189 (1982).

  • 70.

    Nunes, I. et al. Coping with copper: legacy effect of copper on potential activity of soil bacteria following a century of exposure. FEMS Microbiol. Ecol. 92, fiw175 (2016).

    • Article
    • Google Scholar
  • 71.

    Fernandes, A. M., Soratto, R. P., Souza, E., de F. C. & Job, A. L. G. Nutrient uptake and removal by potato cultivars as affected by phosphate fertilization of soils with different levels of phosphorus availability. Rev. Bras. Ciência do Solo 41 (2017).

  • 72.

    Nunes, J. C. S., Fontes, P. C. R., Araújo, E. F. & Sediyama, C. Potato plant growth and macronutrient uptake as affected by soil tillage and irrigation systems. Pesqui. Agropecu. Bras. 41, 1787–1792 (2006).

    • Article
    • Google Scholar
  • 73.

    Mari, A. H. et al. Assessing Zinc Status of Sugarcane in Taluka Nawabshah Through Soil and Plant Analysis. J. Appl. Sci. 6, 206–210 (2009).

    • Google Scholar
  • 74.

    Hailu, H. et al. Soil fertility status and wheat nutrient content in Vertisol cropping systems of central highlands of Ethiopia. Agric. Food Secur. 4, 19 (2015).

    • Article
    • Google Scholar
  • 75.

    Farias, G. et al. Effects of excess copper in vineyard soils on the mineral nutrition of potato genotypes. Food Energy Secur. 49–69, https://doi.org/10.1002/fes3.16 (2013).


  • Source: Ecology - nature.com

    Bioorthogonal non-canonical amino acid tagging reveals translationally active subpopulations of the cystic fibrosis lung microbiota

    Risk of arbovirus emergence via bridge vectors: case study of the sylvatic mosquito Aedes malayensis in the Nakai district, Laos