in

Morphological, elemental, and boron isotopic insights into pathophysiology of diseased coral growth anomalies

  • 1.

    Roberts, C. M. et al. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280–1284, https://doi.org/10.1126/science.1067728 (2002).

  • 2.

    Knowlton, N. & Jackson, J. B. C. Shifting baselines, local impacts, and global change on coral reefs. PLoS Biol. 6, e54, https://doi.org/10.1371/journal.pbio.0060054 (2008).

  • 3.

    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742, https://doi.org/10.1126/science.1152509 (2007).

  • 4.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377, https://doi.org/10.1038/nature21707 (2017).

  • 5.

    Eyre, B. D. et al. Coral reefs will transition to net dissolving before end of century. Science 359, 908–911, https://doi.org/10.1126/science.aao1118 (2018).

  • 6.

    van Dam, J. W., Negri, A. P., Uthicke, S. & Mueller J. F. Chemical Pollution on Coral Reefs: Exposure and Ecological Effects, 1st ed. [Sanchez-Bayo, F., van den Brink, P. J. & Mann R. M. (eds.)] In Ecological Impacts of Toxic Chemicals. Ch. 9, 187–211., https://doi.org/10.2174/978160805121210187 (Bentham Science Publisher Ltd., 2011).

  • 7.

    Aronson, R. B. & Precht, W. F. White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460, 25–38, https://doi.org/10.1023/A:1013103928980 (2001).

    • Article
    • Google Scholar
  • 8.

    Green, E. P. & Bruckner, A. W. The significance of coral disease epizootiology for coral reef conservation. Biol. Conserv. 96, 347–361, https://doi.org/10.1016/S0006-3207(00)00073-2 (2000).

    • Article
    • Google Scholar
  • 9.

    Burge, C. A. et al. Climate change influences on marine infectious diseases: Implications for management and society. Ann. Rev. Mar. Sci. 6, 249–277, https://doi.org/10.1146/annurev-marine-010213-135029 (2014).

  • 10.

    Bruckner, A. W. History of Coral Disease Research, 1st ed. [Woodley, C. M., Downs, C. A., Bruckner A. W., Porter, J. W. & Galloway S. B. (eds.)] In Diseases of Coral. Ch. 5, 52-84., https://doi.org/10.1002/9781118828502.ch5 (John Wiley and Sons Inc., 2015).

  • 11.

    Work, T. & Meteyer, C. To understand coral disease, look at coral cells. Ecohealth 11, 610–618, https://doi.org/10.1007/s10393-014-0931-1 (2014).

  • 12.

    Work, T. M. & Aeby, G. S. Systematically describing gross lesions in corals. Dis. Aquat. Organ. 70, 155–160, https://doi.org/10.3354/dao070155 (2006).

  • 13.

    Lesser, M. P., Bythell, J. C., Gates, R. D., Johnstone, R. W. & Hoegh-Guldberg, O. Are infectious diseases really killing corals? Alternative interpretations of the experimental and ecological data. J. Exp. Mar. Bio. Ecol. 346, 36–44, https://doi.org/10.1016/j.jembe.2007.02.015 (2007).

    • Article
    • Google Scholar
  • 14.

    Work, T. M., Kaczmarsky, L. T. & Peters, E. C. Skeletal Growth Anomalies in Corals, 1st ed. [Woodley, C. M., Downs, C. A., Bruckner A. W., Porter, J. W. & Galloway S. B. (eds.)] In Diseases of Coral. Ch. 20, 291–299, https://doi.org/10.1002/9781118828502.ch20 (John Wiley and Sons Inc., 2015).

  • 15.

    Work, T. M., Aeby, G. S. & Coles, S. L. Distribution and morphology of growth anomalies in Acropora from the Indo-Pacific. Dis. Aquat. Organ. 78, 255–264, https://doi.org/10.3354/dao01881 (2008).

  • 16.

    Stimson, J. Ecological characterization of coral growth anomalies on Porites compressa in Hawai’i. Coral Reefs 30, 133–142, https://doi.org/10.1007/s00338-010-0672-8 (2011).

  • 17.

    Domart-Coulon, I. J. et al. Comprehensive characterization of skeletal tissue growth anomalies of the finger coral Porites compressa. Coral Reefs 25, 531–543, https://doi.org/10.1007/s00338-006-0133-6 (2006).

  • 18.

    Burns, J. H. R., Alexandrov, T., Ovchinnikova, E., Gates, R. D. & Takabayashi, M. Investigating the spatial distribution of growth anomalies affecting Montipora capitata corals in a 3-dimensional framework. J. Invertebr. Pathol. 140, 51–57, https://doi.org/10.1016/j.jip.2016.08.007 (2016).

  • 19.

    Kelly, L. A., Heintz, T., Lamb, J. B., Ainsworth, T. D. & Willis, B. L. Ecology and pathology of novel plaque-like growth anomalies affecting a reef-building coral on the great barrier reef. Front. Mar. Sci. 3, 151, https://doi.org/10.3389/fmars.2016.00151 (2016).

    • Article
    • Google Scholar
  • 20.

    Zhang, Y., Sun, J., Mu, H., Lun, J. C. Y. & Qiu, J. W. Molecular pathology of skeletal growth anomalies in the brain coral Platygyra carnosa: A meta-transcriptomic analysis. Mar. Pollut. Bull. 124, 660–667, https://doi.org/10.1016/j.marpolbul.2017.03.047 (2017).

  • 21.

    Coles, S. L. & Seapy, D. G. Ultra-violet absorbing compounds and tumorous growths on acroporid corals from Bandar Khayran, Gulf of Oman, Indian Ocean. Coral Reefs 17, 195–198, https://doi.org/10.1007/s003380050118 (1998).

    • Article
    • Google Scholar
  • 22.

    Kaczmarsky, L. & Richardson, L. L. Transmission of growth anomalies between Indo-Pacific Porites corals. J. Invertebr. Pathol. 94, 218–221, https://doi.org/10.1016/j.jip.2006.11.007 (2007).

  • 23.

    Aeby, G. S. et al. Growth anomalies on the coral genera Acropora and Porites are strongly associated with host density and human population size across the Indo-Pacific. PLoS One 6, e16887, https://doi.org/10.1371/journal.pone.0016887 (2011).

  • 24.

    Aeby, G. S. et al. Patterns of coral disease across the Hawaiian Archipelago: Relating disease to environment. PLoS One 6, e20370, https://doi.org/10.1371/journal.pone.0020370 (2011).

  • 25.

    Al-Horani, F. A., Al-Moghrabi, S. M. & De Beer, D. The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar. Biol. 142, 419–426, https://doi.org/10.1007/s00227-002-0981-8 (2003).

  • 26.

    Gagnon, A. C., Adkins, J. F., Fernandez, D. P. & Robinson, L. F. Sr/Ca and Mg/Ca vital effects correlated with skeletal architecture in a scleractinian deep-sea coral and the role of Rayleigh fractionation. Earth Planet. Sci. Lett. 261, 280–295, https://doi.org/10.1016/j.epsl.2007.07.013 (2007).

  • 27.

    Hemming, N. G. & Hanson, G. N. Boron isotopic composition and concentration in modern marine carbonates. 56, 537–543, https://doi.org/10.1016/0016-7037(92)90151-8 (1992).

  • 28.

    McCulloch, M., Falter, J., Trotter, J. & Montagna, P. Coral resilience to ocean acidification and global warming through pH up-regulation. Nat. Clim. Chang. 2, 623–627, https://doi.org/10.1038/nclimate1473 (2012).

  • 29.

    Stewart, J. A., Anagnostou, E. & Foster, G. L. An improved boron isotope pH proxy calibration for the deep-sea coral Desmophyllum dianthus through sub-sampling of fibrous aragonite. Chem. Geol. 447, 148–160, https://doi.org/10.1016/j.chemgeo.2016.10.029 (2016).

  • 30.

    Holcomb, M., DeCarlo, T. M., Gaetani, G. A. & McCulloch, M. Factors affecting B/Ca ratios in synthetic aragonite. Chem. Geol. 437, 67–76, https://doi.org/10.1016/j.chemgeo.2016.05.007 (2016).

  • 31.

    McCulloch, M. T., D’Olivo, J. P., Falter, J., Holcomb, M. & Trotter, J. A. Coral calcification in a changing world and the interactive dynamics of pH and DIC upregulation. Nat. Commun. 8, 15686, https://doi.org/10.1038/ncomms15686 (2017).

  • 32.

    DeCarlo, T. M., Holcomb, M. & McCulloch, M. T. Reviews and syntheses: Revisiting the boron systematics of aragonite and their application to coral calcification. Biogeosciences 15, 2819–2834, https://doi.org/10.5194/bg-15-2819-2018 (2018).

  • 33.

    Bahr, K. D., Jokiel, P. L. & Toonen, R. J. The unnatural history of Kane’ohe Bay: coral reef resilience in the face of centuries of anthropogenic impacts. PeerJ 3, e950, https://doi.org/10.7717/peerj.950 (2015).

  • 34.

    Watson, E. B. A conceptual model for near-surface kinetic controls on the trace- element and stable isotope composition of abiogenic calcite crystals. Geochim. Cosmochim. Acta 68, 1473–1488, https://doi.org/10.1016/j.gca.2003.10.003 (2004).

  • 35.

    DePaolo, D. J. Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions. Geochim. Cosmochim. Acta 75, 1039–1056, https://doi.org/10.1016/j.gca.2010.11.020 (2011).

  • 36.

    Meibom, A. et al. Distribution of magnesium in coral skeleton. Geophys. Res. Lett. 31, L23306, https://doi.org/10.1029/2004GL021313 (2004).

  • 37.

    Anagnostou, E. et al. Seawater nutrient and carbonate ion concentrations recorded as P/Ca, Ba/Ca, and U/Ca in the deep-sea coral Desmophyllum dianthus. Geochim. Cosmochim. Acta 75, 2529–2543, https://doi.org/10.1016/j.gca.2011.02.019 (2011).

  • 38.

    Rollion-Bard, C. & Blamart, D. Possible controls on Li, Na, and Mg incorporation into aragonite coral skeletons. Chem. Geol. 396, 98–111, https://doi.org/10.1016/j.chemgeo.2014.12.011 (2015).

  • 39.

    Blamart, D. et al. Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia pertusa: implications for biomineralization and paleo-pH. Geochemistry, Geophys. Geosystems 8, Q12001, https://doi.org/10.1029/2007GC001686 (2007).

  • 40.

    DeCarlo, T. M., Gaetani, G. A., Holcomb, M. & Cohen, A. L. Experimental determination of factors controlling U/Ca of aragonite precipitated from seawater: implications for interpreting coral skeleton. Geochim. Cosmochim. Acta 162, 151–165, https://doi.org/10.1016/j.gca.2015.04.016 (2015).

  • 41.

    Mollica, N. R. et al. Ocean acidification affects coral growth by reducing skeletal density. Proc. Natl. Acad. Sci. USA 115, 1754–1759, https://doi.org/10.1073/pnas.1712806115 (2018).

  • 42.

    Inoue, M., Suwa, R., Suzuki, A., Sakai, K. & Kawahata, H. Effects of seawater pH on growth and skeletal U/Ca ratios of Acropora digitifera coral polyps. Geophys. Res. Lett. 38, L12809, https://doi.org/10.1029/2011GL047786 (2011).

  • 43.

    Schoepf, V. et al. Short-term coral bleaching is not recorded by skeletal boron isotopes. PLoS One 9, e112011, https://doi.org/10.1371/journal.pone.0112011 (2014).

  • 44.

    Dishon, G. et al. A novel paleo-bleaching proxy using boron isotopes and high-resolution laser ablation to reconstruct coral bleaching events. Biogeosciences 12, 5677–5687, https://doi.org/10.5194/bg-12-5677-2015 (2015).

  • 45.

    D’Olivo, J. P. & McCulloch, M. T. Response of coral calcification and calcifying fluid composition to thermally induced bleaching stress. Sci. Rep. 7, 2207, https://doi.org/10.1038/s41598-017-02306-x (2017).

  • 46.

    Chen, S., Gagnon, A. C. & Adkins, J. F. Carbonic anhydrase, coral calcification and a new model of stable isotope vital effects. Geochim. Cosmochim. Acta 236, 179–197, https://doi.org/10.1016/j.gca.2018.02.032 (2018).

  • 47.

    Hakansson, K., Wehnert, A. & Liljas, A. X-ray analysis of metal-substituted human carbonic anhydrase II derivatives. Acta Crystallogr. Sect. D Biol. Crystallogr. 50, 93–100, https://doi.org/10.1107/S0907444993008790 (1994).

  • 48.

    Crans, D. C., Smee, J. J., Gaidamauskas, E. & Yang, L. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem. Rev. 104, 849–902, https://doi.org/10.1021/cr020607t (2004).

  • 49.

    Glass, J. B., Axler, R. P., Chandra, S. & Goldman, C. R. Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures. Front. Microbiol. 3, 331, https://doi.org/10.3389/fmicb.2012.00331 (2012).

  • 50.

    Bellenger, J. P., Wichard, T., Xu, Y. & Kraepiel, A. M. L. Essential metals for nitrogen fixation in a free-living N2-fixing bacterium: chelation, homeostasis and high use efficiency. Environ. Microbiol. 13, 1395–1411, https://doi.org/10.1111/j.1462-2920.2011.02440.x (2011).

  • 51.

    Nuester, J., Vogt, S., Newville, M., Kustka, A. B. & Twining, B. S. The unique biogeochemical signature of the marine diazotroph Trichodesmium. Front. Microbiol. 3, 150, https://doi.org/10.3389/fmicb.2012.00150 (2012).

  • 52.

    Lema, K. A., Willis, B. L. & Bourneb, D. G. Corals form characteristic associations with symbiotic nitrogen-fixing bacteria. Appl. Environ. Microbiol. 78, 3136–3144, https://doi.org/10.1128/AEM.07800-11 (2012).

  • 53.

    Ainsworth, T. D. et al. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J. 9, 2261–2274, https://doi.org/10.1038/ismej.2015.39 (2015).

  • 54.

    Benavides, M., Bednarz, V. N. & Ferrier-Pagès, C. Diazotrophs: overlooked key players within the coral symbiosis and tropical reef ecosystems? Front. Mar. Sci. 4, 10, https://doi.org/10.3389/fmars.2017.00010 (2017).

    • Article
    • Google Scholar
  • 55.

    Lesser, M. P. et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 346, 143–152, https://doi.org/10.3354/meps07008 (2007).

  • 56.

    Olson, N. D., Ainsworth, T. D., Gates, R. D. & Takabayashi, M. Diazotrophic bacteria associated with Hawaiian Montipora corals: diversity and abundance in correlation with symbiotic dinoflagellates. J. Exp. Mar. Bio. Ecol. 371, 140–146, https://doi.org/10.1016/j.jembe.2009.01.012 (2009).

  • 57.

    Breitbart, M., Bhagooli, R., Griffin, S., Johnston, I. & Rohwer, F. Microbial communities associated with skeletal tumors on Porites compressa. FEMS Microbiol. Lett. 243, 431–436, https://doi.org/10.1016/j.femsle.2005.01.004 (2005).

  • 58.

    Wang, Z. et al. Biologically controlled Mo isotope fractionation in coral reef systems. Geochim. Cosmochim. Acta 262, 128–142, https://doi.org/10.1016/j.gca.2019.07.037 (2019).

  • 59.

    Planes, S. et al. The Tara Pacific expedition—A pan-ecosystemic approach of the “-omics” complexity of coral reef holobionts across the Pacific Ocean. PLoS Biol. 17, e3000483, https://doi.org/10.1371/journal.pbio.3000483 (2019).

  • 60.

    Sholkovitz, E. & Shen, G. T. The incorporation of rare earth elements in modern coral. Geochim. Cosmochim. Acta 59, 2749–2756, https://doi.org/10.1016/0016-7037(95)00170-5 (1995).

  • 61.

    Prouty, N. G., Hughen, K. A. & Carilli, J. Geochemical signature of land-based activities in Caribbean coral surface samples. Coral Reefs 27, 727–742, https://doi.org/10.1007/s00338-008-0413-4 (2008).

  • 62.

    Filella, M., Williams, P. A. & Belzile, N. Antimony in the environment: knowns and unknowns. Environ. Chem. 6, 95–105, https://doi.org/10.1071/EN09007 (2009).

  • 63.

    Gonzalez, V., Vignati, D. A. L., Leyval, C. & Giamberini, L. Environmental fate and ecotoxicity of lanthanides: Are they a uniform group beyond chemistry? Environ. Int. 71, 148–157, https://doi.org/10.1016/j.envint.2014.06.019 (2014).

  • 64.

    Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochemistry, Geophys. Geosystems 4, 8407, https://doi.org/10.1029/2003GC000559 (2003).

  • 65.

    Holcomb, M. et al. Cleaning and pre-treatment procedures for biogenic and synthetic calcium carbonate powders for determination of elemental and boron isotopic compositions. Chem. Geol. 398, 11–21, https://doi.org/10.1016/j.chemgeo.2015.01.019 (2015).

  • 66.

    Fowell, S. E. et al. Intrareef variations in Li/Mg and Sr/Ca sea surface temperature proxies in the Caribbean reef-building coral Siderastrea siderea. Paleoceanography 31, 1315–1329, https://doi.org/10.1002/2016PA002968 (2016).

  • 67.

    Cuny-Guirriec, K. et al. Coral Li/Mg thermometry: caveats and constraints. Chem. Geol. 523, 162–178, https://doi.org/10.1016/j.chemgeo.2019.03.038 (2019).

  • 68.

    Marchitto, T. M. Precise multielemental ratios in small foraminiferal samples determined by sector field ICP-MS. Geochemistry, Geophys. Geosystems 7, Q05P13, https://doi.org/10.1029/2005GC001018 (2006).

  • 69.

    Foster, G. L. Seawater pH, pCO2 and [CO32−] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera. Earth Planet. Sci. Lett. 271, 254–266, https://doi.org/10.1016/j.epsl.2008.04.015 (2008).

  • 70.

    Rae, J. W. B., Foster, G. L., Schmidt, D. N. & Elliott, T. Boron isotopes and B/Ca in benthic foraminifera: proxies for the deep ocean carbonate system. Earth Planet. Sci. Lett. 302, 403–413, https://doi.org/10.1016/j.epsl.2010.12.034 (2011).

  • 71.

    Kiss, E. Ion-exchange separation and spectrophotometric determination of boron in geological materials. Anal. Chim. Acta 211, 243–256, https://doi.org/10.1016/S0003-2670(00)83684-3 (1988).

  • 72.

    Gutjahr, M. et al. Boron Isotope Intercomparison Project (BIIP): Development of a new carbonate standard for stable isotopic analyses. EGU general assembly conference abstracts (2014).

  • 73.

    Stewart, J. A., Christopher, S. J. & Day, R. D. New carbonate standard reference materials for boron isotope geochemistry. AGU Fall Meeting Abstracts (2015).

  • 74.

    Dickson, A. G. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep-Sea Res. 37, 755–766, https://doi.org/10.1016/0198-0149(90)90004-F (1990).

  • 75.

    Klochko, K., Kaufman, A. J., Yao, W., Byrne, R. H. & Tossell, J. A. Experimental measurement of boron isotope fractionation in seawater. Earth Planet. Sci. Lett. 248, 276–285, https://doi.org/10.1016/j.epsl.2006.05.034 (2006).

  • 76.

    Foster, G. L., Pogge Von Strandmann, P. A. E. & Rae, J. W. B. Boron and magnesium isotopic composition of seawater. Geochemistry, Geophys. Geosystems 11, Q08015, https://doi.org/10.1029/2010GC003201 (2010).

  • 77.

    Sutton, A. J. et al. High-resolution ocean and atmosphere pCO2 time-series measurements from mooring CRIMP2_158W_21N, North Pacific Ocean, 2008−2016 (NCEI Accession 0157415). NOAA National Centers for Environmental Information, https://doi.org/10.3334/CDIAC/OTG.TSM_CRIMP2_158W_21N (2016).

  • 78.

    Lee, K. et al. The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochim. Cosmochim. Acta 74, 1801–1811, https://doi.org/10.1016/j.gca.2009.12.027 (2010).

  • 79.

    Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K 1 and K 2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119, https://doi.org/10.1016/S0304-4203(00)00022-0 (2000).

  • 80.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate – a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 57, 289–300, https://doi.org/10.1111/j.2517-6161.1995.tb02031.x (1995).


  • Source: Ecology - nature.com

    Q&A: Energy studies at MIT and the next generation of energy leaders

    Effects of climate and land-use changes on fish catches across lakes at a global scale