in

Range-wide genetic structure in the thorn-tailed rayadito suggests limited gene flow towards peripheral populations

  • 1.

    Hill, A., Green, C. & Palacios, E. Genetic diversity and population structure of North America’s rarest heron, the reddish egret (Egretta rufescens). Conserv. Genet. 13, 535–543, https://doi.org/10.1007/s10592-011-0305-y (2012).

    Article  Google Scholar 

  • 2.

    Walsh, J., Kovach, A. I., Babbit, K. J. & O’Brien, K. M. Fine-scale population structure and asymmetrical dispersal in an obligate salt-marsh passerine, the saltmarsh sparrow (Ammodramus caudacutus). Auk 129, 247–258, https://doi.org/10.1525/auk.2012.11153 (2012).

    Article  Google Scholar 

  • 3.

    Wright, S. Isolation by distance under diverse systems of mating. Genetics 30, 571–572 (1945).

    Google Scholar 

  • 4.

    Slatkin, M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47, 264–279, https://doi.org/10.1111/j.1558-5646.1993.tb01215.x (1993).

    Article  PubMed  Google Scholar 

  • 5.

    Hutchison, D. W. & Templeton, A. R. Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53, 1898–1914, https://doi.org/10.1111/j.1558-5646.1999.tb04571.x (1999).

    Article  PubMed  Google Scholar 

  • 6.

    McRae, B. H. Isolation by resistance. Evolution 60, 1551–1561, https://doi.org/10.1111/j.0014-3820.2006.tb00500.x (2006).

    Article  PubMed  Google Scholar 

  • 7.

    Höglund, J. Evolutionary Conservation Genetics. (Oxford Univ. Press, 2009).

  • 8.

    Allendorf, F. W., Luikart, G. H. & Aitken, S. N. Conservation and the genetics of populations. Second edition. (Willey-Blackwell, 2012).

  • 9.

    Crochet, P.-A. Genetic structure of avian populations – allozymes revisited. Mol. Ecol. 9, 1463–1469, https://doi.org/10.1046/j.1365-294x.2000.01026.x (2000).

    CAS  Article  PubMed  Google Scholar 

  • 10.

    Charlesworth, B., Charlesworth, D. & Barton, N. H. The effects of genetic and geographic structure on neutral variation. Ann. Rev. Ecol. Evol. Syst. 34, 99–125, https://doi.org/10.1146/annurev.ecolsys.34.011802.132359 (2003).

    Article  Google Scholar 

  • 11.

    Harris, R. J. & Reed, J. M. Behavioral barriers to non-migratory movements of birds. Ann. Zool. Fennici 39, 275–290 (2002).

    Google Scholar 

  • 12.

    Avise, J. C. Toward a regional conservation genetics perspective: phylogeography of faunas in the southeastern United States in Conservation Genetics: Case Histories from Nature (eds. Avise, J. C., & Hamrick J. L.) 431–470 (Chapman & Hall, 1996).

  • 13.

    Bates, J. M. The genetic effects of forest fragmentation on five species of Amazonian birds. J. Avian Biol. 33, 276–294, https://doi.org/10.1034/j.1600-048X.2002.330310.x (2002).

    Article  Google Scholar 

  • 14.

    Brown, L. M., Ramey, R. R., Tamburini, B. & Gavin, T. A. Population structure and mitochondrial DNA variation in sedentary Neotropical birds isolated by forest fragmentation. Conserv. Genet. 5, 743–757, https://doi.org/10.1007/s10592-004-1865-x (2004).

    CAS  Article  Google Scholar 

  • 15.

    Woltmann, S., Kreiser, B. R. & Sherry, T. W. Fine-scale genetic population structure of an understory rainforest bird in Costa Rica. Conserv. Genet. 13, 925–935, https://doi.org/10.1007/s10592-012-0341-2 (2012).

    Article  Google Scholar 

  • 16.

    Burney, C. W. & Brumfield, R. T. Ecology predicts levels of genetic differentiation in Neotropical birds. Am. Nat. 174, 358–368, https://doi.org/10.1086/603613 (2009).

    Article  PubMed  Google Scholar 

  • 17.

    Karr, J. R. Seasonality, resource availability, and community diversity in tropical bird communities. Am. Nat. 110, 973–994, https://doi.org/10.1086/283121 (1976).

    Article  Google Scholar 

  • 18.

    Şekercioḡlu, Ç. H. et al. Disappearance of insectivorous birds from tropical forest fragments. Proc. Natl. Acad. Sci. 99, 263–267, https://doi.org/10.1073/pnas.012616199 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 19.

    Khimoun, A. et al. Habitat specialization predicts genetic response to fragmentation in tropical birds. Mol. Ecol. 25, 3831–3844, https://doi.org/10.1111/mec.13733 (2016).

    Article  PubMed  Google Scholar 

  • 20.

    Fischer, J. & Lindenmayer, D. B. Landscape modification and habitat fragmentation: A synthesis. Glob. Ecol. Biogeogr. 16, 265–289, https://doi.org/10.1111/j.1466-8238.2007.00287.x (2007).

    Article  Google Scholar 

  • 21.

    Menger, J. et al. Weak evidence for fine-scale genetic spatial structure in three sedentary Amazonian understorey birds. J. Ornithol. 159, 355–366, https://doi.org/10.1007/s10336-017-1507-y (2018).

    ADS  Article  Google Scholar 

  • 22.

    Frankham, R. Challenges and opportunities of genetic approaches to biological conservation. Biol. Conserv. 143, 1919–1927, https://doi.org/10.1016/j.biocon.2010.05.011 (2010).

    Article  Google Scholar 

  • 23.

    Remsen, J. V. & Bonan, A. Thorn-tailed Rayadito (Aphrastura spinicauda) in Handbook of the Birds of the World Alive (eds. del Hoyo, J., Elliot, A., Sargatal, J., Christie, D. A., & de Juana, E.), https://www.hbw.com/node/56401 (Lynx Edicions, 2019).

  • 24.

    Vergara, P. M., Hahn, I. J., Zevallos, H. & Armesto, J. J. The importance of forest patch networks for the conservation of the Thorn-tailed Rayadito in central Chile. Ecol. Res. 25, 683–690, https://doi.org/10.1007/s11284-010-0704-4 (2010).

    Article  Google Scholar 

  • 25.

    Botero-Delgadillo, E. et al. Variation in fine-scale genetic structure and local dispersal patterns between peripheral populations of a South American passerine bird. Ecol. Evol 7, 8363–8378, https://doi.org/10.1002/ece3.3342 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Botero-Delgadillo, E. et al. Ecological and social correlates of natal dispersal in female and male Thorn-tailed Rayadito (Aphrastura spinicauda) in a naturally isolated and fragmented habitat. Auk 136, ukz016, https://doi.org/10.1093/auk/ukz016 (2019).

    Article  Google Scholar 

  • 27.

    González, J. & Wink, M. Genetic differentiation of the Thorn-tailed Rayadito Aphrastura spinicauda (Furnariidae: Passeriformes) revealed by ISSR profiles suggests multiple paleorefugia and high recurrent gene flow. Ibis 152, 761–774, https://doi.org/10.1111/j.1474-919X.2010.01060.x (2010).

    Article  Google Scholar 

  • 28.

    Díaz, I. A., Armesto, J. J., Reid, S., Sieving, K. E. & Willson, M. F. Linking forest structure and composition: Avian diversity in successional forests of Chiloé Island, Chile. Biol. Conserv. 123, 91–101, https://doi.org/10.1016/j.biocon.2004.10.011 (2005).

    Article  Google Scholar 

  • 29.

    Cornelius, C. Spatial variation in nest-site selection by a secondary cavity-nesting bird in a human-altered landscape. Condor 110, 615–626, https://doi.org/10.1525/cond.2008.8608 (2008).

    Article  Google Scholar 

  • 30.

    Tomasevic, J. A. & Estades, C. F. Stand attributes and the abundance of secondary cavity-nesting birds in southern beech (Nothofagus) forests in south-central Chile. Ornitol. Neotrop. 17, 1–14 (2006).

    Google Scholar 

  • 31.

    Quilodrán, C. S., Vásquez, R. & Estades, C. F. Nesting of the Thorn-tailed Rayadito (Aphrastura spinicauda) in a pine plantation in southcentral Chile. Wilson J. Ornithol. 124, 737–742, https://doi.org/10.1676/1559-4491-124.4.737 (2012).

    Article  Google Scholar 

  • 32.

    Cornelius, C. Genetic and demographic consequences of human-driven landscape changes on bird populations: the case of Aphrastura spinicauda (Furnariidae) in the temperate rainforest of South America. PhD thesis (University of Missouri-St. Louis, 2007).

  • 33.

    Vergara, P. M. & Marquet, P. A. On the seasonal effect of landscape structure on a bird species: the thorn-tailed rayadito in a relict forest in northern Chile. Landsc. Ecol. 22, 1059–1071, https://doi.org/10.1007/s10980-007-9091-9 (2007).

    Article  Google Scholar 

  • 34.

    Luebert, F. & Pliscoff, P. Sinopsis bioclimática y vegetacional de Chile. Segunda edición. (Editorial Universitaria, 2018).

  • 35.

    del-Val, E. et al. Rain forest islands in the Chilean semiarid region: fog-dependency, ecosystem persistence and tree regeneration. Ecosystems 9, 598–608, https://doi.org/10.1007/s10021-006-0065-6 (2006).

    Article  Google Scholar 

  • 36.

    Villagrán, C. et al. El enigmático origen del bosque relicto de Fray Jorge in Historia natural del Parque Nacional Bosque Fray Jorge (eds. Scheo, F. A., Gutiérrez, J. R., & Hernández, I. R) 3–43 (Ediciones Univ. de La Serena, 2004).

  • 37.

    Francois, J. P. Eslabones de una cadena rota: el caso del bosque relicto de Santa Inés in Historia natural del Parque Nacional Bosque Fray Jorge (eds. Scheo, F. A., Gutiérrez, J. R., & Hernández, I. R) 205–218 (Ediciones Univ. de La Serena, 2004).

  • 38.

    Cornelius, C., Cofré, H. & Marquet, P. A. Effects of habitat fragmentation on bird species in a relict temperate forest in semiarid Chile. Conserv. Biol. 14, 534–543, https://doi.org/10.1046/j.1523-1739.2000.98409.x (2000).

    Article  Google Scholar 

  • 39.

    Vergara, P. M., Pérez-Hernández, C. G., Hahn, I. J. & Soto, G. E. Deforestation in central Chile causes a rapid decline in landscape connectivity for a forest specialist bird species. Ecol. Res. 28, 481–492, https://doi.org/10.1007/s11284-013-1037-x (2013).

    Article  Google Scholar 

  • 40.

    Griffiths, R., Double, M. C., Orr, K. & Dawson, R. J. G. A DNA test to sex most birds. Mol. Ecol. 7, 1071–1075, https://doi.org/10.1046/j.1365-294x.1998.00389.x (1998).

    CAS  Article  PubMed  Google Scholar 

  • 41.

    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405, https://doi.org/10.1093/bioinformatics/btn129 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 42.

    Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281, https://doi.org/10.7717/peerj.281 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    R Core Team. R: a language and environment for statistical computing, version 3.5.2. R Foundation for Statistical Computing, http://www.R.project.org (2018).

  • 44.

    Goudet, J. & Jombart, T. hierfstat: estimation and tests of hierarchical F-Statistics. R package version 0.04-22, https://CRAN.R-project.org/package=hierfstat (2015).

  • 45.

    Do, C. et al. NeEstimator V2: re-implementation of software for the estimation of contemporary effective population size (N e) from genetic data. Mol. Ecol. Res. 14, 209–214, https://doi.org/10.1111/1755-0998.12157 (2014).

    CAS  Article  Google Scholar 

  • 46.

    Cornuet, J.-M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).

    CAS  PubMed  Google Scholar 

  • 48.

    Rogers, J. S. Measures of Genetic Similarity and Genetic Distance in Studies in Genetics VII. 145–153 (Univ. of Texas Publication 7213, 1972).

  • 49.

    Teske, P. R. et al. Mitochondrial DNA is unsuitable to test for isolation by distance. Sci. Rep. 8, 8448, https://doi.org/10.1038/s41598-018-25138-9 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    Meirmans, P. G. The trouble with isolation by distance. Mol. Ecol. 21, 2839–2846, https://doi.org/10.1111/j.1365-294X.2012.05578.x (2012).

    Article  PubMed  Google Scholar 

  • 51.

    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research –an update. Bioinformatics 28, 2537–2539, https://doi.org/10.1093/bioinformatics/bts460 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 52.

    Nei, M. Molecular Evolutionary Genetics (Columbia University Press, 1987).

  • 53.

    Hedrick, P. W. A standardized genetic differentiation measure. Evolution 59, 1633–1638 (2005).

    CAS  Article  Google Scholar 

  • 54.

    Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genetics 2, 2071–2093, https://doi.org/10.1371/journal.pgen.0020190 (2006).

    CAS  Article  Google Scholar 

  • 55.

    Putman, A. I. & Carbone, I. Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol. Evol. 4, 4399–4428, https://doi.org/10.1002/ece3.1305 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 56.

    Beugin, M.-P., Gayet, T., Pontier, D., Devillar, S. & Jombart, T. A fast likelihood solution to the genetic clustering problem. Methods Ecol. Evol. 9, 1006–1016, https://doi.org/10.1111/2041-210X.12968 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genetics 11, 94, https://doi.org/10.1186/1471-2156-11-94 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • 58.

    Pérez, M. F. et al. Assessing population structure in the face of isolation by distance: Are we neglecting the problem? Divers. Distrib. 24, 1883–1889, https://doi.org/10.1111/ddi.12816 (2018).

    Article  Google Scholar 

  • 59.

    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).

    PubMed  PubMed Central  Google Scholar 

  • 60.

    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904, https://doi.org/10.1093/sysbio/syy032 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 61.

    Faubet, P., Waples, R. S. & Gaggiotti, O. E. Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol. Ecol. 16, 1149–1166, https://doi.org/10.1111/j.1365-294X.2007.03218.x (2007).

    Article  PubMed  Google Scholar 

  • 62.

    Nei, M., Maruyama, T. & Chakraborty, R. The bottleneck effects and genetic variability in populations. Evolution 29, 1–10, https://doi.org/10.1111/j.1558-5646.1975.tb00807.x (1975).

    Article  PubMed  Google Scholar 

  • 63.

    Schlatter, R. P. & Moreno, G. M. Historia natural del archipiélago Diego Ramírez, Chile. Serie Cient. INACH (Chile) 47, 87–112.

  • 64.

    Bradburd, G. S., Coop, G. M. & Ralph, P. L. Inferring continuous and discrete population genetic structure across space. Genetics 210, 33–52, https://doi.org/10.1534/genetics.118.301333 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 65.

    Handley, L. J., Manica, A., Goudet, J. & Balloux, F. Going the distance: human population genetics in a clinal world. Trends Genet. 23, 432–439, https://doi.org/10.1016/j.tig.2007.07.002. (2007).

    CAS  Article  PubMed  Google Scholar 

  • 66.

    Carmelli, D. & Cavalli-Sforza, L. Some models of population structure and evolution. Theoret. Popn. Biol. 9, 329–359, https://doi.org/10.1016/0040-5809(76)90052-6 (1976).

    MathSciNet  CAS  Article  MATH  Google Scholar 

  • 67.

    Sawyer, S. & Felsenstein, J. Isolation by distance in a hierarchically clustered Population. J. Appl. Prob. 20, 1–10, https://doi.org/10.2307/3213715 (1983).

    MathSciNet  Article  MATH  Google Scholar 

  • 68.

    Eckert, C. G., Samis, K. E. & Lougheed, S. C. Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol. Ecol. 17, 1170–1188, https://doi.org/10.1111/j.1365-294X.2007.03659.x (2008).

    CAS  Article  PubMed  Google Scholar 

  • 69.

    Vucetich, J. A. & Waite, T. A. Spatial patterns of demography and genetic processes across the species’ range: Null hypotheses for landscape conservation genetics. Conserv. Genet. 4, 639–645, https://doi.org/10.1023/A:102567183 (2003).

    Article  Google Scholar 

  • 70.

    Estades, C. F. & Temple, S. Deciduous-forest bird communities in a fragmented landscape dominated by exotic pine plantations. Ecol. App. 9, 573–585, 10.1890/1051-0761(1999)009[0573:DFBCIA]2.0.CO;2 (1999).

  • 71.

    Quirici, V. et al. Age and terminal reproductive attempt influence laying date in the thorn-tailed rayadito. J. Avian Biol. 50, e02059, https://doi.org/10.1111/jav.02059 (2019).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Safely managed drinking water services in the Democratic People’s Republic of Korea: findings from the 2017 Multiple Indicator Cluster Survey

    Permo–Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse