in

Species multidimensional effects explain idiosyncratic responses of communities to environmental change

  • 1.

    Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).

    Article  Google Scholar 

  • 2.

    Cenci, S., Song, C. & Saavedra, S. Rethinking the importance of the structure of ecological networks under an environment-dependent framework. Ecol. Evol. 8, 6852–6859 (2018).

    Article  Google Scholar 

  • 3.

    Hutchins, L. W. The bases for temperature zonation in geographical distribution. Ecol. Monogr. 17, 325–335 (1947).

    Article  Google Scholar 

  • 4.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  • 5.

    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).

    Article  Google Scholar 

  • 6.

    Jiang, L. & Morin, P. J. Temperature-dependent interactions explain unexpected responses to environmental warming in communities of competitors. J. Anim. Ecol. 73, 569–576 (2004).

    Article  Google Scholar 

  • 7.

    Kordas, R. L., Harley, C. D. G. & O’Connor, M. I. Community ecology in a warming world: the influence of temperature on interspecific interactions in marine systems. J. Exp. Mar. Biol. Ecol. 400, 218–226 (2011).

    Article  Google Scholar 

  • 8.

    O’Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A. & Bruno, J. F. Warming and resource availability shift food web structure and metabolism. PLoS Biol. 7, e1000178 (2009).

    Article  Google Scholar 

  • 9.

    Petchey, O. L., McPhearson, P. T., Casey, T. M. & Morin, P. J. Environmental warming alters food-web structure and ecosystem function. Nature 402, 69–72 (1999).

    CAS  Article  Google Scholar 

  • 10.

    Sentis, A., Hemptinne, J.-L. & Brodeur, J. Towards a mechanistic understanding of temperature and enrichment effects on species interaction strength, omnivory and food-web structure. Ecol. Lett. 17, 785–793 (2014).

    Article  Google Scholar 

  • 11.

    Wootton, J. T. The nature and consequences of indirect effects in ecological communities. Annu. Rev. Ecol. Syst. 25, 443–466 (1994).

    Article  Google Scholar 

  • 12.

    Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).

    Article  Google Scholar 

  • 13.

    Koltz, A. M., Classen, A. T. & Wright, J. P. Warming reverses top-down effects of predators on belowground ecosystem function in arctic tundra. Proc. Natl Acad. Sci. USA 115, E7541–E7549 (2018).

    CAS  Article  Google Scholar 

  • 14.

    Song, C., Ahn, S. V., Rohr, R. P. & Saavedra, S. Towards a probabilistic understanding about the context-dependency of species interactions. Trends Ecol. Evol. 35, 384–396 (2020).

    Article  Google Scholar 

  • 15.

    Montoya, J., Woodward, G., Emmerson, M. C. & Solé, R. V. Press perturbations and indirect effects in real food webs. Ecology 90, 2426–2433 (2009).

    Article  Google Scholar 

  • 16.

    Higashi, M. & Patten, B. C. Dominance of indirect causality in ecosystems. Am. Nat. 133, 288–302 (1989).

    Article  Google Scholar 

  • 17.

    Binzer, A., Guill, C., Brose, U. & Rall, B. C. The dynamics of food chains under climate change and nutrient enrichment. Phil. Trans. R. Soc. B 367, 2935–2944 (2012).

    Article  Google Scholar 

  • 18.

    Binzer, A., Guill, C., Rall, B. C. & Brose, U. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure. Glob. Change Biol. 22, 220–227 (2016).

    Article  Google Scholar 

  • 19.

    Sentis, A., Binzer, A. & Boukal, D. S. Temperature–size responses alter food chain persistence across environmental gradients. Ecol. Lett. 20, 852–862 (2017).

    Article  Google Scholar 

  • 20.

    Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).

    CAS  Article  Google Scholar 

  • 21.

    Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B. & Wood, S. Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783–786 (1998).

    CAS  Article  Google Scholar 

  • 22.

    Allison, S. D. et al. Microbial abundance and composition influence litter decomposition response to environmental change. Ecology 94, 714–725 (2013).

    Article  Google Scholar 

  • 23.

    Widder, S. et al. Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME J. 10, 2557–2568 (2016).

    Article  Google Scholar 

  • 24.

    Saavedra, S. et al. A structural approach for understanding multispecies coexistence. Ecol. Monogr. 87, 470–486 (2017).

    Article  Google Scholar 

  • 25.

    Song, C., Rohr, R. P. & Saavedra, S. A guideline to study the feasibility domain of multi-trophic and changing ecological communities. J. Theor. Biol. 450, 30–36 (2018).

    Article  Google Scholar 

  • 26.

    Vandermeer, J. H. Interspecific competition: a new approach to the classical theory. Science 188, 253–255 (1975).

    CAS  Article  Google Scholar 

  • 27.

    Rohr, R. P. et al. Persist or produce: a community trade-off tuned by species evenness. Am. Nat. 188, 411–422 (2016).

    Article  Google Scholar 

  • 28.

    Logofet, D. O. Matrices and Graphs: Stability Problems in Mathematical Ecology (CRC Press, 1993).

  • 29.

    Cenci, S. & Saavedra, S. Structural stability of nonlinear population dynamics. Phys. Rev. E 97, 012401 (2018).

    CAS  Article  Google Scholar 

  • 30.

    Saavedra, S., Rohr, R. P., Gilarranz, L. J. & Bascompte, J. How structurally stable are global socioeconomic systems? J. R. Soc. Interface 11, 20140693 (2014).

    Article  Google Scholar 

  • 31.

    Altermatt, F. et al. Big answers from small worlds: a user’s guide for protist microcosms as a model system in ecology and evolution. Methods Ecol. Evol. 6, 218–231 (2015).

    Article  Google Scholar 

  • 32.

    Fox, J. W. & Morin, P. J. Effects of intra- and interspecific interactions on species responses to environmental change. J. Anim. Ecol. 70, 80–90 (2001).

    Article  Google Scholar 

  • 33.

    Van der Putten, W. H., Macel, M. & Visser, M. E. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Phil. Trans. R. Soc. B Biol. Sci. 365, 2025–2034 (2010).

    Article  Google Scholar 

  • 34.

    Song, C. & Saavedra, S. Will a small randomly assembled community be feasible and stable? Ecology 99, 743–751 (2017).

    Article  Google Scholar 

  • 35.

    Cottingham, K. L., Lennon, J. T. & Brown, B. L. Knowing when to draw the line: designing more informative ecological experiments. Front. Ecol. Environ. 3, 145–152 (2005).

    Article  Google Scholar 

  • 36.

    Leary, D. J. & Petchey, O. L. Testing a biological mechanism of the insurance hypothesis in experimental aquatic communities. J. Anim. Ecol. 78, 1143–1151 (2009).

    Article  Google Scholar 

  • 37.

    Pennekamp, F., Schtickzelle, N. & Petchey, O. L. BEMOVI, software for extracting behavior and morphology from videos, illustrated with analyses of microbes. Ecol. Evol. 5, 2584–2595 (2015).

    Article  Google Scholar 

  • 38.

    Pennekamp, F. et al. Dynamic species classification of microorganisms across time, abiotic and biotic environments—a sliding window approach. PLoS ONE 12, e0176682 (2017).

    Article  Google Scholar 

  • 39.

    Pennekamp, F. et al. Biodiversity increases and decreases ecosystem stability. Nature 563, 109–112 (2018).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Dimorphic flowers modify the visitation order of pollinators from male to female flowers

    Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation