in

Reply to: Nutrient scarcity cannot cause mast seeding

  • 1.

    Fernández-Martínez, M. et al. Nutrient scarcity as a selective pressure for mast seeding. Nat. Plants 5, 1222–1228 (2019).

    Article  Google Scholar 

  • 2.

    Kelly, D. Nutrient scarcity cannot cause mast seeding. Nat. Plants https://doi.org/10.1038/s41477-020-0702-7 (2020).

  • 3.

    Fernández-Martínez, M. et al. Nutrient-rich plants emit a less intense blend of volatile isoprenoids. New Phytol. 220, 773–784 (2018).

    Article  Google Scholar 

  • 4.

    Peñuelas, J. et al. The bioelements, the elementome, and the biogeochemical niche. Ecology 100, e02652 (2019).

    Article  Google Scholar 

  • 5.

    Fernández-Martínez, M., Vicca, S., Janssens, I. A., Espelta, J. M. & Peñuelas, J. The role of nutrients, productivity and climate in determining tree fruit production in European forests. New Phytol. 213, 669–679 (2016).

    Article  Google Scholar 

  • 6.

    Reekie, E. G. & Bazzaz, F. A. Reproductive effort in plants. II Does carbon reflect the allocation of other resources? Am. Nat. 129, 897–906 (1987).

    Article  Google Scholar 

  • 7.

    Redmond, M. D., Davis, T. S., Ferrenberg, S. M. & Wion, A. P. Resource allocation trade-offs in a mast-seeding conifer: piñon pine prioritizes reproduction over defense. AoB Plants 11, 1–11 (2019).

    Google Scholar 

  • 8.

    Pearse, I. S., Koenig, W. D. & Kelly, D. Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytol. 212, 546–562 (2016).

    CAS  Article  Google Scholar 

  • 9.

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    CAS  Article  Google Scholar 

  • 10.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 489, 326–326 (2012).

    CAS  Article  Google Scholar 

  • 11.

    Fernández-Martínez, M., Bogdziewicz, M., Espelta, J. M. & Peñuelas, J. Nature beyond linearity: meteorological variability and Jensen’s inequality can explain mast seeding behavior. Front. Ecol. Evol. 5, 1–8 (2017).

    Article  Google Scholar 

  • 12.

    Fernández-Martínez, M., Garbulsky, M., Peñuelas, J., Peguero, G. & Espelta, J. M. Temporal trends in the enhanced vegetation index and spring weather predict seed production in Mediterranean oaks. Plant Ecol. 216, 1061–1072 (2015).

    Article  Google Scholar 

  • 13.

    Fernández-Martínez, M. et al. Towards a moss sclerophylly continuum: evolutionary history, water chemistry and climate control traits of hygrophytic mosses. Funct. Ecol. 33, 2273–2289 (2019).

    Article  Google Scholar 

  • 14.

    Rydgren, K. & Økland, R. H. Sex distribution and sporophyte frequency in a population of the clonal moss Hylocomium splendens. J. Bryol. 24, 207–214 (2002).

    Article  Google Scholar 

  • 15.

    Martínez de Aragón, J., Riera, P., Giergiczny, M. & Colinas, C. Value of wild mushroom picking as an environmental service. Policy Econ. 13, 419–424 (2011).

    Article  Google Scholar 

  • 16.

    Groot Bruinderink, G. W. T. A., Hazebroek, E. & Van Der Voot, H. Diet and condition of wild boar, Sus scrofu scrofu, without supplementary feeding. J. Zool. 233, 631–648 (1994).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Dimorphic flowers modify the visitation order of pollinators from male to female flowers

    Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation