in

Effects of biochar-based controlled release nitrogen fertilizer on nitrogen-use efficiency of oilseed rape (Brassica napus L.)

  • 1.

    Liu, X. Y. et al. Nitrate is an important nitrogen source for Arctic tundra plants. Proc. Natl. Acad. Sci. 115(13), 3398–3403 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878), 889–892 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Zheng, W. et al. Combining controlled-release urea and normal urea to improve the nitrogen use efficiency and yield under wheat-maize double cropping system. Field Crops Res. 197, 52–62 (2016).

    Google Scholar 

  • 4.

    Wang, G. et al. Identification and characterization of improved nitrogen efficiency in interspecific hybridized new-type Brassica napus. Ann. Bot. 114(3), 549–559 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Grant, C. A. et al. Crop yield and nitrogen concentration with controlled release urea and split applications of nitrogen as compared to non-coated urea applied at seeding. Field Crops Res. 127, 170–180 (2012).

    Google Scholar 

  • 6.

    Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528(7580), 51 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 7.

    Gul, S. & Whalen, J. K. Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biol. Biochem. 103, 1–15 (2016).

    CAS  Google Scholar 

  • 8.

    Case, S. D., McNamara, N. P., Reay, D. S. & Whitaker, J. The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil—the role of soil aeration. Soil Biol. Biochem. 51, 125–134 (2012).

    CAS  Google Scholar 

  • 9.

    Güereña, D. et al. Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant Soil 365(1–2), 239–254 (2013).

    Google Scholar 

  • 10.

    Kim, P., Hensley, D. & Labbé, N. Nutrient release from switchgrass-derived biochar pellets embedded with fertilizers. Geoderma 232, 341–351 (2014).

    ADS  Google Scholar 

  • 11.

    Schmidt, H. et al. Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil. Agriculture. 5(3), 723–741 (2015).

    CAS  Google Scholar 

  • 12.

    Kammann, C. I. et al. Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci. Rep. 5, 11080 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Montes-Morán, M. A., Suárez, D., Menéndez, J. A. & Fuente, E. On the nature of basic sites on carbon surfaces: an overview. Carbon 42(7), 1219–1225 (2004).

    Google Scholar 

  • 14.

    Amonette, J. E., Joseph, S. Characteristics of biochar: microchemical properties. In Biochar for environmental management, 65–84 (Routledge, 2012).

  • 15.

    Qian, L. et al. Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China. Carbon Manag. 5(2), 145–154 (2014).

    CAS  Google Scholar 

  • 16.

    Chunxue, Y. et al. Developing more effective enhanced biochar fertilisers for improvement of pepper yield and quality. Pedosphere. 25(5), 703–712 (2015).

    Google Scholar 

  • 17.

    Chen, L. et al. Formulating and optimizing a novel biochar-based fertilizer for simultaneous slow-release of nitrogen and immobilization of cadmium. Sustainability. 10(8), 2740 (2018).

    CAS  Google Scholar 

  • 18.

    Wen, P. et al. Microwave-assisted synthesis of a novel biochar-based slow-release nitrogen fertilizer with enhanced water-retention capacity. ACS Sustain. Chem. Eng. 5(8), 7374–7382 (2017).

    CAS  Google Scholar 

  • 19.

    Zheng, H. et al. Enhanced growth of halophyte plants in biochar-amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation. Plant Cell Environ. 41(3), 517–532 (2017).

    PubMed  Google Scholar 

  • 20.

    Zhou, Z. et al. Increases in bacterial community network complexity induced by biochar-based fertilizer amendments to karst calcareous soil. Geoderma 337, 691–700 (2019).

    ADS  CAS  Google Scholar 

  • 21.

    Nelson, M. B., Martiny, A. C. & Martiny, J. B. Global biogeography of microbial nitrogen-cycling traits in soil. Proc. Natl. Acad. Sci. 113(29), 8033–8040 (2016).

    CAS  PubMed  Google Scholar 

  • 22.

    Lehmann, J. et al. Biochar effects on soil biota–a review. Soil Biol. Biochem. 43(9), 1812–1836 (2011).

    CAS  Google Scholar 

  • 23.

    Levy-Booth, D. J., Prescott, C. E. & Grayston, S. J. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol. Biochem. 75, 11–25 (2014).

    CAS  Google Scholar 

  • 24.

    Francis, C. A., Beman, J. M. & Kuypers, M. M. New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J. 1(1), 19 (2007).

    CAS  PubMed  Google Scholar 

  • 25.

    Song, Y., Zhang, X., Ma, B., Chang, S. X. & Gong, J. Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil. Biol. Fertil. Soils 50(2), 321–332 (2014).

    CAS  Google Scholar 

  • 26.

    Wang, Z. et al. Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar. Chemosphere 138, 576–583 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 27.

    Ducey, T. F., Ippolito, J. A., Cantrell, K. B., Novak, J. M. & Lentz, R. D. Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances. Appl. Soil. Ecol. 65, 65–72 (2013).

    Google Scholar 

  • 28.

    Harter, J. et al. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME J. 8(3), 660 (2014).

    CAS  PubMed  Google Scholar 

  • 29.

    Bai, S. H. et al. Wood biochar increases nitrogen retention in field settings mainly through abiotic processes. Soil Biol. Biochem. 90, 232–240 (2015).

    CAS  Google Scholar 

  • 30.

    Han, Y. L. et al. Nitrogen use efficiency is mediated by vacuolar nitrate sequestration capacity in roots of Brassica napus. Plant Physiol. 170(3), 1684–1698 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    USDA FAS (Foreign Agricultural Service) Oilseeds: World Markets and Trade (2015).

  • 32.

    Barłóg, P. & Grzebisz, W. Effect of timing and nitrogen fertilizer application on winter oilseed rape (Brassica napus L.). II. Nitrogen uptake dynamics and fertilizer efficiency. J. Agron. Crop Sci. 190(5), 314–323 (2004).

    Google Scholar 

  • 33.

    Li, X. et al. Responses of plant development, biomass and seed production of direct sown oilseed rape (Brassica napus) to nitrogen application at different stages in Yangtze River Basin. Field Crops Res. 194, 12–20 (2016).

    Google Scholar 

  • 34.

    Liu, X. R. et al. A biochar-based route for environmentally friendly controlled release of nitrogen: urea-loaded biochar and bentonite composite. Sci. Rep. 9(1), 2045–2322 (2019).

    ADS  Google Scholar 

  • 35.

    Gao, X., Li, C., Zhang, M., Wang, R. & Chen, B. Controlled release urea improved the nitrogen use efficiency, yield and quality of potato (Solanum tuberosum L.) on silt loamy soil. Field Crops Res. 181, 60–68 (2015).

    Google Scholar 

  • 36.

    Liang, Y., Cao, X., Zhao, L., Xu, X. & Harris, W. Phosphorus release from dairy manure, the manure-derived biochar, and their amended soil: effects of phosphorus nature and soil property. J. Environ. Qual. 43(4), 1504–1509 (2014).

    PubMed  Google Scholar 

  • 37.

    Li, D. et al. Effects of low nitrogen supply on relationships between photosynthesis and nitrogen status at different leaf position in wheat seedlings. Plant Growth Regul. 70(3), 257–263 (2013).

    CAS  Google Scholar 

  • 38.

    Gombert, J. et al. Effect of nitrogen fertilization on nitrogen dynamics in oilseed rape using 15N-labeling field experiment. J. Plant Nutr. Soil Sci. 173(6), 875–884 (2010).

    CAS  Google Scholar 

  • 39.

    Kuypers, M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16(5), 263 (2018).

    CAS  PubMed  Google Scholar 

  • 40.

    Stein, L. Y. & Klotz, M. G. The nitrogen cycle. Curr. Biol. 26, R94–R98 (2016).

    CAS  PubMed  Google Scholar 

  • 41.

    Li, J. et al. amoA gene abundances and nitrification potential rates suggest that benthic ammonia-oxidizing bacteria and not archaea dominate N cycling in the Colne Estuary, United Kingdom. Appl. Environ. Microbiol. 81(1), 159–165 (2015).

    PubMed  Google Scholar 

  • 42.

    Zhang, L. M., Hu, H. W., Shen, J. P. & He, J. Z. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J. 6(5), 1032 (2012).

    CAS  PubMed  Google Scholar 

  • 43.

    Shen, X. Y. et al. Nitrogen loading levels affect abundance and composition of soil ammonia oxidizing prokaryotes in semiarid temperate grassland. J. Soils Sediments. 11(7), 1243 (2011).

    CAS  Google Scholar 

  • 44.

    Simonin, M. et al. Coupling between and among ammonia oxidizers and nitrite oxidizers in grassland mesocosms submitted to elevated CO2 and nitrogen supply. Microb. Ecol. 70(3), 809–818 (2015).

    CAS  PubMed  Google Scholar 

  • 45.

    Kolton, M., Graber, E. R., Tsehansky, L., Elad, Y. & Cytryn, E. Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere. New Phytol. 213(3), 1393–1404 (2017).

    CAS  PubMed  Google Scholar 

  • 46.

    Xu, S. et al. Linking N2O emissions from biofertilizer-amended soil of tea plantations to the abundance and structure of N2O-reducing microbial communities. Environ. Sci. Technol. 52(19), 11338–11345 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 47.

    Farrell, M. et al. Microbial utilisation of biochar-derived carbon. Sci. Total Environ. 465, 288–297 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 48.

    Whitman, T. et al. Dynamics of microbial community composition and soil organic carbon mineralization in soil following addition of pyrogenic and fresh organic matter. ISME J. 10(12), 2918 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Trivedi, P., Anderson, I. C. & Singh, B. K. Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol. 21(12), 641–651 (2013).

    CAS  PubMed  Google Scholar 

  • 50.

    Kindaichi, T., Yamaoka, S., Uehara, R., Ozaki, N., Ohashi, A., Albertsen, M., Nielsen, J. L. Phylogenetic diversity and ecophysiology of Candidate phylum Saccharibacteria in activated sludge. FEMS Microbiol. Ecol. 92(6) (2016).

  • 51.

    Gregersen, L. H., Bryant, D. A. & Frigaard, N. U. Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria. Front. Microbiol. 2, 116 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Rivas, R. et al. A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (Lf) Druce. Appl. Environ. Microbiol. 68(11), 5217–5222 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Kappler, A. et al. Biochar as an electron shuttle between bacteria and Fe (III) minerals. Environ. Sci. Technol. Lett. 1, 339–344 (2014).

    CAS  Google Scholar 

  • 54.

    Saquing, J. M., Yu, Y. & Chiu, P. C. Wood-derived black carbon (biochar) as a microbial electron donor and acceptor. Environ. Sci. Technol. Lett. 3, 62–66 (2016).

    CAS  Google Scholar 

  • 55.

    Yu, L., Yuan, Y., Tang, J., Wang, Y. & Zhou, S. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens. Sci. Rep. 5, 16221 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Zhou, G. et al. Electron shuttles enhance anaerobic ammonium oxidation coupled to iron (III) reduction. Environ. Sci. Technol. 50, 9298–9307 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 57.

    Lu, S., Lepo, J. E., Song, H. X., Guan, C. Y. & Zhang, Z. H. Increased rice yield in long-term crop rotation regimes through improved soil structure, rhizosphere microbial communities, and nutrient bioavailability in paddy soil. Biol. Fertil. Soils 54(8), 909–923 (2018).

    Google Scholar 

  • 58.

    Medina, L., Sartain, J. B., Obreza, T. A., Hall, W. L. & Thiex, N. J. Evaluation of a soil incubation method to characterize nitrogen release patterns of slow-and controlled-release fertilizers. J. AOAC Int. 97(3), 643–660 (2014).

    CAS  PubMed  Google Scholar 

  • 59.

    Zhang, S. et al. Bio-based interpenetrating network polymer composites from locust sawdust as coating material for environmentally friendly controlled-release urea fertilizers. J. Agric. Food Chem. 64(28), 5692–5700 (2016).

    CAS  PubMed  Google Scholar 

  • 60.

    Sciubba, L., Cavani, L., Marzadori, C. & Ciavatta, C. Effect of biosolids from municipal sewage sludge composted with rice husk on soil functionality. Biol. Fertil. Soils 49(5), 597–608 (2013).

    CAS  Google Scholar 

  • 61.

    He, J. Z. et al. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ. Microbiol. 9(9), 2364–2374 (2007).

    CAS  PubMed  Google Scholar 

  • 62.

    Schnürer, J. & Rosswall, T. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl. Environ. Microbiol. 43(6), 1256–1261 (1982).

    PubMed  PubMed Central  Google Scholar 

  • 63.

    Yao, M. et al. The differentiation of soil bacterial communities along a precipitation and temperature gradient in the eastern Inner Mongolia steppe. CATENA 152, 47–56 (2017).

    CAS  Google Scholar 

  • 64.

    Luo, H. H., Zhang, Y. L. & Zhang, W. F. Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch. Photosynthetica. 54(1), 65–73 (2016).

    CAS  Google Scholar 

  • 65.

    Fan, X. et al. Comparing nitrate storage and remobilization in two rice cultivars that differ in their nitrogen use efficiency. J. Exp. Bot. 58(7), 1729–1740 (2007).

    CAS  PubMed  Google Scholar 

  • 66.

    Vestergaard, G., Schulz, S., Schöler, A. & Schloter, M. Making big data smart—how to use metagenomics to understand soil quality. Biol. Fertil. Soils 53(5), 479–484 (2017).

    Google Scholar 

  • 67.

    Schöler, A., Jacquiod, S., Vestergaard, G., Schulz, S. & Schloter, M. Analysis of soil microbial communities based on amplicon sequencing of marker genes. Biol. Fertil. Soils 53, 485–489 (2017).

    Google Scholar 

  • 68.

    Oksanen J., Blanchet F G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P R., O’Hara R B., Simpson G L., Solymos P., Stevens M H. vegan: Community Ecology Package. R package version 2.4–1 (2016).


  • Source: Ecology - nature.com

    Species-specific effects of thermal stress on the expression of genetic variation across a diverse group of plant and animal taxa under experimental conditions

    Coprophagy prevention alters microbiome, metabolism, neurochemistry, and cognitive behavior in a small mammal