in

More severe disturbance regimes drive the shift of a kelp forest to a sea urchin barren in south-eastern Australia

  • 1.

    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).

    CAS  Google Scholar 

  • 2.

    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Jentsch, A., Kreyling, J. & Beierkuhnlein, C. A new generation of climate change experiments: events, not trends. Front. Ecol. Environ. 5, 365–374 (2007).

    Google Scholar 

  • 4.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 5.

    Fisher, E. M. & Knutti, R. Robust projections of combined humidity and temperature extremes. Nat. Clim. Change 3, 126–130 (2013).

    ADS  Google Scholar 

  • 6.

    Bertocci, I., Maggi, E., Vaselli, S. & Benedetti-Cecchi, L. Contrasting effects of mean intensity and temporal variation of disturbance on a rocky seashore. Ecology 86, 2061–2067 (2005).

    Google Scholar 

  • 7.

    Byrnes, J. E. et al. Climate-driven increases in storm frequency simplify kelp forest food webs. Glob. Change Biol. 17, 2513–2524. https://doi.org/10.1111/j.1365-2486.2011.02409.x (2011).

    ADS  Article  Google Scholar 

  • 8.

    Pulsford, S. A., Lindenmayer, D. B. & Driscoll, D. A. A succession of theories: purging redundancy from disturbance theory. Biol. Rev. 91, 148–167 (2016).

    PubMed  Google Scholar 

  • 9.

    Watt, A. S. Pattern and process in the plant community. J. Ecol. 35, 1–22 (1947).

    Google Scholar 

  • 10.

    Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Sousa, W. P. The role of disturbance in natural communities. Annu. Rev. Ecol. Syst. 15, 353–391 (1984).

    Google Scholar 

  • 12.

    Cardinale, B. J. & Palmer, M. A. Disturbance moderates biodiversity ecosystem function relationships: evidence from suspension feeding caddisflies in stream mesocosms. Ecology 83, 1915–1927 (2002).

    Google Scholar 

  • 13.

    Dayton, P. K. Competition, disturbance and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr. 41, 351–389 (1971).

    Google Scholar 

  • 14.

    Paine, R. T. & Levin, S. A. Intertidal landscapes: disturbance and the dynamics of pattern. Ecol. Monogr. 51, 145–178 (1981).

    Google Scholar 

  • 15.

    Connell, J. H., Hughes, T. P. & Wallace, C. C. A 30-year study of coral abundance recruitment and disturbance at several scales in space and time. Ecol. Monogr. 67, 461–488 (1997).

    Google Scholar 

  • 16.

    Sousa, W. P. In Marine Community Ecology (eds Bertness, M. D. et al.) 85–130 (Sinauer Assoc, Sunderland, 1984).

    Google Scholar 

  • 17.

    Mackey, R. L. & Currie, D. J. The diversity–disturbance relationship: is it generally strong and peaked?. Ecology 82, 3479–3492 (2001).

    Google Scholar 

  • 18.

    Hughes, A. R., Byrnes, J. E., Kimbro, D. L. & Stachowicz, J. J. Reciprocal relationships and potential feedbacks between biodiversity and disturbance. Ecol. Lett. 10, 849–864 (2007).

    PubMed  Google Scholar 

  • 19.

    Fox, J. W. The intermediate disturbance hypothesis should be abandoned. Trends Ecol. Evol. 28, 86–92 (2013).

    PubMed  Google Scholar 

  • 20.

    Coffin, D. P. & Lauenroth, W. K. The effects of disturbance size and frequency on a shortgrass plant community. Ecology 69, 1609–1617 (1988).

    Google Scholar 

  • 21.

    Keough, M. J. & Quinn, G. P. Effects of periodic disturbances from trampling on rocky intertidal algal beds. Ecol. Appl. 8, 141–161 (1998).

    Google Scholar 

  • 22.

    Reed, D. C., Raimondi, P. T., Carr, M. H. & Goldwasser, L. The role of dispersal and disturbance in determining spatial heterogeneity in sedentary organisms. Ecology 81, 2011–2026 (2000).

    Google Scholar 

  • 23.

    Clark, G. F. & Johnston, E. L. Temporal change in the diversity–invasibility relationship in the presence of a disturbance regime. Ecol. Lett. 14, 52–57 (2011).

    PubMed  Google Scholar 

  • 24.

    Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organisation. Am. Nat. 111, 1119–1144 (1977).

    Google Scholar 

  • 25.

    Barry, J. P. Reproductive response of a marine annelid to winter storms: an analog to fire adaptation in plants?. Mar. Ecol. Prog. Ser. 54, 99–107 (1989).

    ADS  Google Scholar 

  • 26.

    Rydgren, K., Økland, R. H. & Hestmark, G. Disturbance severity and community resilience in a boreal forest. Ecology 85, 1906–1915 (2004).

    Google Scholar 

  • 27.

    Caplat, P. & Anand, M. Effects of disturbance frequency, species traits and resprouting on directional succession in an individual-based model of forest dynamics. J. Ecol. 97, 1028–1036 (2009).

    Google Scholar 

  • 28.

    Casanova, M. T. & Brock, M. A. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities?. Plant Ecol. 147, 237–250 (2000).

    Google Scholar 

  • 29.

    Villnäs, A. et al. The role of recurrent disturbances for ecosystem multifunctionality. Ecology 94, 2275–2287 (2013).

    PubMed  Google Scholar 

  • 30.

    Lenz, M., Molis, M. & Wahl, M. Experimental test of the intermediate disturbance hypothesis: frequency effects of emersion on fouling communities. J. Exp. Mar. Biol. Ecol. 305, 247–266 (2004).

    Google Scholar 

  • 31.

    Johnston, E. L. & Keough, M. J. Field assessment of the effects of timing and frequency of copper pulses on settlement of sessile marine invertebrates. Mar. Biol. 137, 1017–1029 (2000).

    Google Scholar 

  • 32.

    Johnston, E. L. & Keough, M. J. Direct and indirect effects of repeated pollution events of marine hard-substrate assemblages. Ecol. Appl. 12, 1212–1228 (2002).

    Google Scholar 

  • 33.

    Woods, K. D. Intermediate disturbance in a late-successional hemlock northern hardwood forest. J. Ecol. 92, 464–476 (2004).

    Google Scholar 

  • 34.

    Peterson, C. J., Krueger, L. M., Royo, A. A., Stark, S. & Carson, W. P. Disturbance size and severity covary in small and mid-size wind disturbances in Pennsylvania northern hardwoods forests. For. Ecol. Manag. 302, 273–279 (2013).

    Google Scholar 

  • 35.

    Ebeling, A. W., Laur, D. R. & Rowley, R. J. Severe storm disturbances and reversal of community structure in a southern California kelp forest. Mar. Biol. 84, 287–294 (1985).

    Google Scholar 

  • 36.

    Foster, D. R. Disturbance history, community organization and vegetation dynamics of the old-growth Pisgah forest, south-western New Hampshire, USA. J. Ecol. 76, 105–134 (1988).

    Google Scholar 

  • 37.

    Romme, W. H., Everham, E. H., Frelich, L. E., Moritz, M. A. & Sparks, R. E. Are large infrequent disturbances qualitatively different from small frequent disturbances?. Ecosystems 1, 524–534 (1998).

    Google Scholar 

  • 38.

    Turner, M. G., Baker, W. L., Peterson, C. J. & Peet, R. K. Factors influencing succession: lessons from large, infrequent natural disturbances. Ecosystems 1, 511–523 (1998).

    Google Scholar 

  • 39.

    Reed, D. C. et al. Wave disturbance overwhelms top-down and bottom-up control of primary production in California kelp forests. Ecology 92, 2108–2116 (2011).

    PubMed  Google Scholar 

  • 40.

    Irving, A. D., Connell, S. D. & Elsdon, T. S. Effects of kelp canopies on bleaching and photosynthetic activity of encrusting coralline algae. J. Exp. Mar. Biol. Ecol. 310, 1–12 (2004).

    Google Scholar 

  • 41.

    Carnell, P. E. & Keough, M. J. The influence of herbivores on primary producers can vary spatially and interact with disturbance. Oikos https://doi.org/10.1111/oik.02502 (2016).

    Article  Google Scholar 

  • 42.

    Drake, J. A. Community assembly mechanics and the structure of an experimental species assemblage. Am. Nat. 137, 1–26 (1991).

    Google Scholar 

  • 43.

    Petraitis, P. S. & Latham, R. E. The importance of scale in testing the origins of alternative community states. Ecology 80, 429–442 (1999).

    Google Scholar 

  • 44.

    Petraitis, P. Multiple Stable States in Natural Ecosystems (Oxford University Press, Oxford, 2013).

    Google Scholar 

  • 45.

    Kennelly, S. J. Physical disturbances in an Australian kelp community I. Temporal effects. Mar. Ecol. Prog. Ser. 40, 145–153. https://doi.org/10.3354/meps040145 (1987).

    ADS  Article  Google Scholar 

  • 46.

    Dayton, P. K. The structure and regulation of some south american kelp communities. Ecol. Monogr. 55, 447–468 (1985).

    Google Scholar 

  • 47.

    Eckman, J. E., Duggins, D. O. & Sewell, A. T. Ecology of understory kelp environments I. Effects of kelps on flow and particle transport near the bottom. J. Exp. Mar. Biol. Ecol. 129, 173–188 (1989).

    Google Scholar 

  • 48.

    Kennelly, S. J. Effects of kelp canopies on understorey species due to shade and scour. Mar. Ecol. Prog. Ser. 50, 215–224 (1989).

    ADS  Google Scholar 

  • 49.

    Wernberg, T., Kendrick, G. A. & Toohey, B. D. Modification of physical environment by an Ecklonia radiata (Laminariales) canopy and its implications for associated foliose algae. Aquat. Ecol. 39, 419–430 (2005).

    Google Scholar 

  • 50.

    Carnell, P. E. & Keough, M. J. Spatially variable synergistic effects of disturbance and additional nutrients on kelp recruitment and recovery. Oecologia 175, 409–416. https://doi.org/10.1007/s00442-014-2907-9 (2014).

    ADS  Article  PubMed  Google Scholar 

  • 51.

    Kennelly, S. J. Physical disturbances in an Australian kelp community II. Effects on understorey species due to differences in kelp cover. Mar. Ecol. Prog. Ser. 40, 155–165. https://doi.org/10.3354/meps040145 (1987).

    ADS  Article  Google Scholar 

  • 52.

    Kohler, K. & Gill, S. Coral point count with excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32, 1259–1269 (2006).

    ADS  Google Scholar 

  • 53.

    Steneck, R. S. & Dethier, M. N. A functional group approach to the structure of algal-dominated communities. Oikos 69, 476–498 (1994).

    Google Scholar 

  • 54.

    Anderson, M. J. et al. Permanova+ for Primer: Guide to Software and Statistical Methods (PRIMER-E, Plymouth, 2008).

    Google Scholar 

  • 55.

    Kennelly, S. J. Inhibition of kelp recruitment by turfing algae and consequences for an Australian kelp community. J. Exp. Mar. Biol. Ecol. 112, 49–60. https://doi.org/10.1016/S0022-0981(87)80014-X (1987).

    Article  Google Scholar 

  • 56.

    Irving, A. D. & Connell, S. D. Sedimentation and light penetration interact to maintain heterogeneity of subtidal habitats: algal versus invertebrate dominated assemblages. Mar. Ecol. Prog. Ser. 245, 83–91 (2002).

    ADS  Google Scholar 

  • 57.

    Toohey, B. D. et al. The effects of light and thallus scour from Ecklonia radiata canopy on an associated foliose algal assemblage: the importance of photoacclimation. Mar. Biol. 144, 1019–1027 (2004).

    Google Scholar 

  • 58.

    Toohey, B. D. & Kendrick, G. A. Survival of juvenile Ecklonia radiata sporophytes after canopy loss. J. Exp. Mar. Biol. Ecol. 349, 170–182 (2007).

    Google Scholar 

  • 59.

    Altamirano, M., Murakami, A. & Kawai, H. High light stress in the kelp Ecklonia cava. Aquat. Bot. 79, 125–135 (2004).

    Google Scholar 

  • 60.

    Longmore, A., & Nicholson, G. Baywide nutrient cycling (denitrification) monitoring program: milestone report no. 17 (December 2011–March 2012). www.oem.vic.gov.au/NutrientCycling (2012)

  • 61.

    Crockett, P. F. The Ecology and Ecophysiology of Caulerpa in Port Phillip Bay (School of Botany, The University of Melbourne, Melbourne, 2013).

    Google Scholar 

  • 62.

    Irving, A. D. & Connell, S. D. Physical disturbance by kelp abrades erect algae from the understorey. Mar. Ecol. Prog. Ser. 324, 127–137 (2006).

    ADS  Google Scholar 

  • 63.

    Konar, B. & Estes, J. A. The stability of boundary regions between kelp beds and deforested areas. Ecology 84, 174–185 (2003).

    Google Scholar 

  • 64.

    Konar, B., Edwards, M. S. & Estes, J. A. Biological interactions maintain the boundaries between kelp forests and urchin barrens in the Aleutian Archipelago. Hydrobiologia 724, 91–107 (2014).

    Google Scholar 

  • 65.

    Pickett, S. T. A. & White, P. S. The Ecology of Natural Disturbance and Patch Dynamics (Academic Press, New York, 1985).

    Google Scholar 

  • 66.

    Warner, R. R. & Chesson, P. L. Coexistence mediated by environmental variability: a field guide to the storage effect. Am. Nat. 126, 769–787 (1985).

    Google Scholar 

  • 67.

    Macreadie, P. I., York, P. H. & Sherman, C. D. H. Resilience of Zostera muelleri seagrass to small-scale disturbances: the relative importance of asexual versus sexual recovery. Ecol. Evol. 4, 450–461 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 68.

    Smith, T. M. et al. Recovery pathways from small-scale disturbance in a temperate Australian seagrass. Mar. Ecol. Prog. Ser. 542, 97–108 (2016).

    ADS  CAS  Google Scholar 

  • 69.

    Wootton, H. F. & Keough, M. J. Disturbance type and intensity combine to affect resilience of an intertidal community. Mar. Ecol. Prog. Ser. 560, 121–133 (2016).

    ADS  Google Scholar 

  • 70.

    Coffin, D. P. & Lauenroth, W. K. Spatial and temporal variation in the seed bank of a semiarid grassland. Am. J. Bot. 76, 53–58 (1989).

    Google Scholar 

  • 71.

    Kalamees, R. & Zobel, M. The role of the seed bank in gap regeneration in a calcareous grassland community. Ecology S3, 1011–1025 (2002).

    Google Scholar 

  • 72.

    Rasheed, M. A. Recovery and succession in a multi-species tropical seagrass meadow following experimental disturbance: the role of sexual and asexual reproduction. J. Exp. Mar. Biol. Ecol. 310, 13–45 (2004).

    Google Scholar 

  • 73.

    Dayton, P. K. & Tegner, M. J. Bottoms below troubled waters: benthic impacts of the 1982–84 El Niño in the temperate zone. In Ecological Consequences of the 1982–83 El Niño to Marine Life. Elsevier Oceanography Series No. 52 (ed. Glynn, P. W.) 433–472 (Elsevier, Amsterdam, 1990).

    Google Scholar 

  • 74.

    Arafeh-Dalmau, N. et al. Extreme marine heatwaves alter kelp forest community near its equatorward distribution limit. Front. Mar. Sci. 6, 499. https://doi.org/10.3389/fmars.2019.00499 (2019).

    Article  Google Scholar 

  • 75.

    Piola, R. F. & Johnston, E. L. Pollution reduces native diversity and increases invader dominance in marine hard-substrate communities. Div. Dist. 14, 329–342 (2008).

    Google Scholar 

  • 76.

    Catford, J. A. et al. The intermediate disturbance hypothesis and plant invasions: implications for species richness and management. Perspect. Plant Ecol. Evol. Syst. 14, 231–241 (2012).

    Google Scholar 

  • 77.

    Jauni, M., Gripenberg, S. & Ramula, S. Non-native plant species benefit from disturbance: a meta-analysis. Oikos 124, 122–129. https://doi.org/10.1111/oik.01416 (2014).

    Article  Google Scholar 

  • 78.

    Clark, G. F. & Johnston, E. L. Propagule pressure and disturbance interact to overcome biotic resistance of marine invertebrate communities. Oikos 118, 1679–1686 (2009).

    Google Scholar 

  • 79.

    Symons, C. C. & Arnott, S. E. Timing is everything: priority effects alter community invasibility after disturbance. Ecol. Evol. 4, 397–407 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 80.

    Klinger, R. & Brooks, M. Alternative pathways to landscape transformation: invasive grasses, burn severity and fire frequency in arid ecosystems. J. Ecol. 105, 1521–1533 (2017).

    Google Scholar 

  • 81.

    Castorani, M. C. N., Reed, D. C. & Miller, R. J. Loss of foundation species: disturbance frequency outweighs severity in structuring kelp forest communities. Ecology 99, 2442–2454. https://doi.org/10.1002/ecy.2485 (2018).

    Article  PubMed  Google Scholar 

  • 82.

    Torda, G. et al. Decadal erosion of coral assemblages by multiple disturbances in the Palm Islands, central Great Barrier Reef. Sci. Rep. 8, 11885 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 83.

    Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).

    Google Scholar 

  • 84.

    Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402. https://doi.org/10.1038/nclimate3303 (2017).

    ADS  Article  Google Scholar 

  • 85.

    Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: a review. Philos. Trans. R. Soc. B 372, 20160135. https://doi.org/10.1098/rstb.2016.0135 (2017).

    Article  Google Scholar 

  • 86.

    McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 1, 1–9. https://doi.org/10.1111/nph.15027 (2018).

    Article  Google Scholar 

  • 87.

    Johnston, E. L. & Keough, M. J. Reduction of pollution impacts through the control of toxicant release must be site- and season-specific. J. Exp. Mar. Biol. Ecol. 320, 9–33 (2005).

    Google Scholar 

  • 88.

    Sheil, D. & Burselem, D. F. R. P. Disturbing hypotheses in tropical forests. Trends Ecol. Evol. 18, 18–26 (2003).

    Google Scholar 

  • 89.

    Svensson, J. R., Lindegarth, M. & Pavia, H. Equal rates of disturbance cause different patterns of diversity. Ecology 90, 496–505. https://doi.org/10.1890/07-1628.1 (2009).

    Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Quantitative comparison between the rhizosphere effect of Arabidopsis thaliana and co-occurring plant species with a longer life history

    A new approach to carbon capture