in

Disturbance history can increase functional stability in the face of both repeated disturbances of the same type and novel disturbances

  • 1.

    Nazaries, L. et al. Evidence of microbial regulation of biogeochemical cycles from a study on methane flux and land use change. Appl. Environ. Microbiol. 79, 4031–4040. https://doi.org/10.1128/aem.00095-13 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 2.

    Offre, P., Spang, A. & Schleper, C. Archaea in biogeochemical cycles. Annu. Rev. Microbiol. 67(67), 437–457. https://doi.org/10.1146/annurev-micro-092412-155614 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 3.

    Rousk, J. & Bengtson, P. Microbial regulation of global biogeochemical cycles. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00103 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    IPCC. Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 1535 pp (Cambridge, United Kingdom and New York, NY, USA, 2013).

  • 5.

    Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. https://doi.org/10.3389/fmicb.2012.00417 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 105, 11512–11519. https://doi.org/10.1073/pnas.0801925105 (2008).

    ADS  Article  PubMed  Google Scholar 

  • 7.

    Griffiths, B. S. & Philippot, L. Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol. Rev. 37, 112–129. https://doi.org/10.1111/j.1574-6976.2012.00343.x (2013).

    CAS  Article  PubMed  Google Scholar 

  • 8.

    Lindh, M. V. & Pinhassi, J. Sensitivity of bacterioplankton to environmental disturbance: a review of Baltic Sea field studies and experiments. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00361 (2018).

    Article  Google Scholar 

  • 9.

    Free, A., McDonald, M. A. & Pagaling, E. Diversity-function relationships in natural, applied, and engineered microbial ecosystems. Adv. Appl. Microbiol. 105(105), 131–189. https://doi.org/10.1016/bs.aambs.2018.07.002 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 10.

    Hillebrand, H. et al. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 21, 21–30. https://doi.org/10.1111/ele.12867 (2018).

    Article  PubMed  Google Scholar 

  • 11.

    Griffiths, B. S. et al. Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos 90, 279–294. https://doi.org/10.1034/j.1600-0706.2000.900208.x (2000).

    Article  Google Scholar 

  • 12.

    Baho, D. L., Peter, H. & Tranvik, L. J. Resistance and resilience of microbial communities-temporal and spatial insurance against perturbations. Environ. Microbiol. 14, 2283–2292. https://doi.org/10.1111/j.1462-2920.2012.02754.x (2012).

    Article  PubMed  Google Scholar 

  • 13.

    Berga, M., Székely, A. J. & Langenheder, S. Effects of disturbance intensity and frequency on bacterial community composition and function. PLoS ONE 7, e36959 (2012).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Ager, D., Evans, S., Li, H., Lilley, A. K. & van der Gast, C. J. Anthropogenic disturbance affects the structure of bacterial communities. Environ. Microbiol. 12, 670–678. https://doi.org/10.1111/j.1462-2920.2009.02107.x (2010).

    Article  PubMed  Google Scholar 

  • 15.

    Sjöstedt, J. et al. Reduced diversity and changed bacterioplankton community composition do not affect utilization of dissolved organic matter in the Adriatic Sea. Aquat. Microb. Ecol. 71, 15–24 (2013).

    Article  Google Scholar 

  • 16.

    Vaquer-Sunyer, R. et al. Dissolved organic nitrogen inputs from wastewater treatment plant effluents increase responses of planktonic metabolic rates to warming. Environ. Sci. Technol. 49, 11411–11420. https://doi.org/10.1021/acs.est.5b00674 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 17.

    Bergen, B. et al. Acidification and warming affect prominent bacteria in two seasonal phytoplankton bloom mesocosms. Environ. Microbiol. 18, 4579–4595. https://doi.org/10.1111/1462-2920.13549 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 18.

    Salis, R. K., Bruder, A., Piggott, J. J., Summerfield, T. C. & Matthaei, C. D. High-throughput amplicon sequencing and stream benthic bacteria: identifying the best taxonomic level for multiplestressor research. Sci. Rep. 7, 12. https://doi.org/10.1038/srep44657 (2017).

    CAS  Article  Google Scholar 

  • 19.

    Sjöstedt, J., Langenheder, S., Kritzberg, E., Karlsson, C. M. G. & Lindstrom, E. S. Repeated disturbances affect functional but not compositional resistance and resilience in an aquatic bacterioplankton community. Environ. Microbiol. Rep. 10, 493–500. https://doi.org/10.1111/1758-2229.12656 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 20.

    Odum, E. P. in Stress effects on natural ecosystems (eds G. W. Barrett & R. Rosenberg) 43–47 (Wiley, London 1981).

  • 21.

    Herren, C. M., Webert, K. C. & McMahon, K. D. Environmental disturbances decrease the variability of microbial populations within periphyton. mSystems 1, 14. https://doi.org/10.1128/mSystems.00013-16 (2016).

    Article  Google Scholar 

  • 22.

    Tobor-Kaplon, M. A., Bloem, J. & de Ruiter, P. C. Functional stability of microbial communites from long-term stressed soils to additional disturbances. Environ. Toxicol. Chem. 25, 1993–1999 (2006).

    CAS  Article  Google Scholar 

  • 23.

    Tolkkinen, M. et al. Multi-stressor impacts on fungal diversity and ecosystem functions in streams: natural vs. anthropogenic stress. Ecology 96, 672–683. https://doi.org/10.1890/14-0743.1 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 24.

    Müller, A. K., Westergaard, K., Christensen, S. & Sørensen, S. J. The diversity and function of soil microbial communities exposed to different disturbances. Microb. Ecol. 44, 49–58 (2002).

    Article  Google Scholar 

  • 25.

    Leyer, G. J. & Johnson, E. A. Acid adaptation induces cross-protection against environmental stresses in salmonella-typhimurium. Appl. Environ. Microbiol. 59, 1842–1847. https://doi.org/10.1128/aem.59.6.1842-1847.1993 (1993).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Rillig, M. C., Rolff, J., Tietjen, B., Wehner, J. & Andrade-Linares, D. R. Community priming-effects of sequential stressors on microbial assemblages. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiv040 (2015).

    Article  PubMed  Google Scholar 

  • 27.

    Andrade-Linares, D. R., Lehmann, A. & Rillig, M. C. Microbial stress priming—a meta-analysis. Environ. Microbiol. https://doi.org/10.1111/1462-2920.13223 (2016).

    Article  PubMed  Google Scholar 

  • 28.

    Cebrian, G., Sagarzazu, N., Pagan, R., Condon, S. & Manas, P. Development of stress resistance in Staphylococcus aureus after exposure to sublethal environmental conditions. Int. J. Food Microbiol. 140, 26–33. https://doi.org/10.1016/j.ijfoodmicro.2010.02.017 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 29.

    Vinebrooke, R. D. et al. Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104, 451–457 (2004).

    Article  Google Scholar 

  • 30.

    Mills, A. L. & Mallory, L. M. The community structure of sessile heterotrophic bacteria stressed by acid mine drainage. Microb. Ecol. 14, 219–232 (1987).

    CAS  Article  Google Scholar 

  • 31.

    Atlas, R. M., Horowitz, A., Krichevsky, M. & Bej, A. K. Response of microbial populations to environmental disturbance. Microb. Ecol. 22, 249–256 (1991).

    CAS  Article  Google Scholar 

  • 32.

    Berga, M., Zha, Y. H., Szekely, A. J. & Langenheder, S. Functional and compositional stability of bacterial metacommunities in response to salinity changes. Front. Microbiol. 8, 11. https://doi.org/10.3389/fmicb.2017.00948 (2017).

    Article  Google Scholar 

  • 33.

    Allison, G. The influence of species diversity and stress intensity on community resistance and resilience. Ecol. Monogr. 74, 117–134. https://doi.org/10.1890/02-0681 (2004).

    Article  Google Scholar 

  • 34.

    Downing, A. L. & Leibold, M. A. Species richness facilitates ecosystem resilience in aquatic food webs. Freshwat. Biol. 55, 2123–2137. https://doi.org/10.1111/j.1365-2427.2010.02472.x (2010).

    Article  Google Scholar 

  • 35.

    Kim, M., Heo, E., Kang, H. & Adams, J. Changes in soil bacterial community structure with increasing disturbance frequency. Microb. Ecol. 66, 171–181. https://doi.org/10.1007/s00248-013-0237-9 (2013).

    Article  PubMed  Google Scholar 

  • 36.

    Gibbons, S. M. et al. Disturbance regimes predictably alter diversity in an ecologically complex bacterial system. mBio https://doi.org/10.1128/mBio.01372-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514. https://doi.org/10.1111/j.2008.0030-1299.16215.x (2008).

    Article  Google Scholar 

  • 38.

    Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233. https://doi.org/10.1146/annurev.es.19.110188.001231 (1988).

    Article  Google Scholar 

  • 39.

    Pandit, S. N., Kolasa, J. & Cottenie, K. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90, 2253–2262. https://doi.org/10.1890/08-0851.1 (2009).

    Article  PubMed  Google Scholar 

  • 40.

    Blanck, H. A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. Hum. Ecol. Risk Assess. 8, 1003–1034. https://doi.org/10.1080/1080-700291905792 (2002).

    Article  Google Scholar 

  • 41.

    Li, J. et al. Initial copper stress strengthens the resistance of soil microorganisms to a subsequent copper stress. Microb. Ecol. 67, 931–941. https://doi.org/10.1007/s00248-014-0391-8 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 42.

    Girvan, M. S., Campbell, C. D., Killham, K., Prosser, J. I. & Glover, L. A. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ. Microbiol. 7, 301–313 (2005).

    CAS  Article  Google Scholar 

  • 43.

    Azarbad, H. et al. Resilience of soil microbial communities to metals and additional stressors: DNA-based approaches for assessing “stress-on-stress” responses. Int. J. Mol. Sci. 17, 1–21 (2016).

    Article  Google Scholar 

  • 44.

    Calow, P. Physiological costs of combating chemical toxicants: ecological implications. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 100, 3–6 (1991).

    CAS  Article  Google Scholar 

  • 45.

    Kuperman, R. G. & Carreiro, M. M. Soil heavy metal concentrations, microbial biomass and enzyme activities in contaminated grassland ecosytem. Soil Biol. Biochem. 29, 179–190 (1997).

    CAS  Article  Google Scholar 

  • 46.

    Mulder, C. P. H., Uliassi, D. D. & Doak, D. F. Physical stress and diversity-productivity relationships: the role of positive interactions. Proc. Natl. Acad. Sci. USA 98, 6704–6708. https://doi.org/10.1073/pnas.111055298 (2001).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 47.

    Grman, E., Lau, J. A., Schoolmaster, D. R. & Gross, K. L. Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecol. Lett. 13, 1400–1410. https://doi.org/10.1111/j.1461-0248.2010.01533.x (2010).

    Article  PubMed  Google Scholar 

  • 48.

    Philippot, L. et al. Effect of primary mild stress on resilience and resistance of the nitrate reducer community to a subsequent severe stress. FEMS Microbiol. Lett. 285, 51–57 (2008).

    CAS  Article  Google Scholar 

  • 49.

    Kassen, B. & Bell, G. Experimental evolution in Chlamydomonas. IV. Selection in environments that vary through time at different scales. Heredity 80, 732–741 (1998).

    Article  Google Scholar 

  • 50.

    Venail, P. A., Kaltz, O., Olivieri, I., Pommier, T. & Mouquet, N. Diversification in temporally heterogeneous environments: effect of the grain in experimental bacterial populations. J. Evol. Biol. 24, 2485–2495. https://doi.org/10.1111/j.1420-9101.2011.02376.x (2011).

    CAS  Article  PubMed  Google Scholar 

  • 51.

    Nezhad, M. H., Hussain, M. A. & Britz, M. L. Stress responses in probiotic Lactobacillus casei. Crit. Rev. Food Sci. Nutr. 55, 740–749. https://doi.org/10.1080/10408398.2012.675601 (2015).

    CAS  Article  Google Scholar 

  • 52.

    Zhai, Z. Y. et al. Proteomic characterization of the acid tolerance response in Lactobacillus delbrueckii subsp bulgaricusCAUH1 and functional identification of a novel acid stress-related transcriptional regulator Ldb0677. Environ. Microbiol. 16, 1524–1537. https://doi.org/10.1111/1462-2920.12280 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    Morita, R. Y. Psychrophilic bacteria. Bacteriol. Rev. 39, 144–167 (1975).

    CAS  Article  Google Scholar 

  • 54.

    Persson, I., Pirard, J., Larsson, A., Holm, C. & Lousa-Alvin, A. Kväveafskiljningens effekt på Ekoln. Report No. 2012-12, 72 (Svenskt Vatten Utveckling, 2012).

  • 55.

    Baath, E. & Kritzberg, E. pH tolerance in freshwater bacterioplankton: trait variation of the community as measured by leucine incorporation. Appl. Environ. Microbiol. 81, 7411–7419. https://doi.org/10.1128/aem.02236-15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 56.

    Sinclair, L., Osman, O. A., Bertilsson, S. & Eiler, A. Microbial community composition and diversity via 16S rRNA gene amplicons: evaluating the illumina platform. PLoS ONE https://doi.org/10.1371/journal.pone.0116955 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Edgar, R. C. UPARSE highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996+ (2013).

    CAS  Article  Google Scholar 

  • 58.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS  Article  Google Scholar 

  • 59.

    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137. https://doi.org/10.3354/ame01753 (2015).

    Article  Google Scholar 

  • 60.

    Oksanen, J. et al. vegan: Community Ecology Package. https://CRAN.R-project.org/package=vegan (2015).

  • 61.

    del Giorgio, P., Bird, D. F., Prairie, Y. T. & Planas, D. Flow cytometric determination of bacterial abundance in lake plankton with the green nucleic acid stain SYTO 13. Limnol. Oceanogr. 41, 783–789 (1996).

    ADS  Article  Google Scholar 

  • 62.

    Smith, D. C. & Azam, F. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-Leucine. Mar. Microbial. Food Webs 6, 107–114 (1992).

    Google Scholar 

  • 63.

    Kirchman, D. L. in Handbook of methods in aquatic microbial ecology (eds P. F. Kemp, E. B. Sherr, B. F. Sherr, & J. J. Cole) (Lewis Publishers, London, 1993).

  • 64.

    Ylla, I., Peter, H., Romani, A. M. & Tranvik, L. J. Different diversity-functioning relationship in lake and stream bacterial communities. FEMS Microbiol. Ecol. 85, 95–103. https://doi.org/10.1111/1574-6941.12101 (2013).

    Article  PubMed  Google Scholar 

  • 65.

    Maxwell, S. E., Delaney, H. D. & Kelly, K. Designing Experiments and Analyzing Data: A Model Comparison Perspective (3, Routledge, London, 2018).

    Google Scholar 


  • Source: Ecology - nature.com

    IDEAL, the Infectious Diseases of East African Livestock project open access database and biobank

    Coupling feeding activity, growth rates and molecular data shows dietetic needs of Ciona robusta (Ascidiacea, Phlebobranchia) in automatic culture plants