in

Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt

  • 1.

    Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–48.

    CAS  PubMed  Google Scholar 

  • 2.

    Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95 6578–83.

  • 3.

    Gentile CL, Weir TL. The gut microbiota at the intersection of diet and human health. Science. 2018;362:776–80.

    CAS  PubMed  Google Scholar 

  • 4.

    Penesyan A, Kjelleberg S, Egan S. Development of novel drugs from marine surface associated microorganisms. Mar drugs. 2010;8:438–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Chaparro JM, Sheflin AM, Manter DK, Vivanco JM. Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils. 2012;48:489–99.

    Google Scholar 

  • 6.

    Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U. Soil fertility and biodiversity in organic farming. Science. 2002;296:1694–7.

    PubMed  Google Scholar 

  • 7.

    Classen AT, Sundqvist MK, Henning JA, Newman GS, Moore JA, Cregger MA, et al. Direct and indirect effects of climate change on soil microbial and soil microbial‐plant interactions: what lies ahead? Ecosphere. 2015;6:1–21.

    Google Scholar 

  • 8.

    de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, et al. Soil bacterial networks are less stable under drought than fungal networks. Nat Commun. 2018;9:3033.

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Van Der Heijden MG, Bardgett RD, Van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett. 2008;11:296–310.

    PubMed  Google Scholar 

  • 10.

    Hawkes CV, Wren IF, Herman DJ, Firestone MK. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol Lett. 2005;8:976–85.

    Google Scholar 

  • 11.

    Yuan J, Zhao J, Wen T, Zhao M, Li R, Goossens P, et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome. 2018;6:156.

    PubMed  PubMed Central  Google Scholar 

  • 12.

    De Corato U, Patruno L, Avella N, Lacolla G, Cucci G. Composts from green sources show an increased suppressiveness to soilborne plant pathogenic fungi: Relationships between physicochemical properties, disease suppression, and the microbiome. Crop Prot. 2019;124:104870.

    Google Scholar 

  • 13.

    Finkel OM, Castrillo G, Paredes SH, González IS, Dangl JL. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol. 2017;38:155–63.

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends plant Sci. 2012;17:478–86.

    CAS  PubMed  Google Scholar 

  • 15.

    Ploetz RC. Fusarium wilt of banana. Phytopathology. 2015;105:1512–21.

    PubMed  Google Scholar 

  • 16.

    Cha J-Y, Han S, Hong H-J, Cho H, Kim D, Kwon Y, et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 2016;10:119.

    CAS  PubMed  Google Scholar 

  • 17.

    Gordon TR. Fusarium oxysporum and the Fusarium Wilt Syndrome. Annu Rev Phytopathol. 2017;55:23–39.

    CAS  PubMed  Google Scholar 

  • 18.

    Laurence MH, Burgess LW, Summerell BA, Liew ECY. High levels of diversity in Fusarium oxysporum from non-cultivated ecosystems in Australia. Fungal Biol. 2012;116:289–97.

    CAS  PubMed  Google Scholar 

  • 19.

    Nyvad B, Fejerskov O. An ultrastructural-study of bacterial invasion and tissue breakdown in human experimental root-surface caries. J Dent Res. 1990;69:1118–25.

    CAS  PubMed  Google Scholar 

  • 20.

    Klein E, Ofek M, Katan J, Minz D, Gamliel A. Soil suppressiveness to Fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization. Phytopathology. 2012;103:23–33.

    Google Scholar 

  • 21.

    Mendes LW, Mendes R, Raaijmakers JM, Tsai SM. Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean. ISME J. 2018;12:3038–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Xiong W, Li R, Ren Y, Liu C, Zhao Q, Wu H, et al. Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease. Soil Biol Biochem. 2017;107:198–207.

    CAS  Google Scholar 

  • 23.

    Ye XF, Li ZK, Luo X, Wang WH, Li YK, Li R, et al. A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community. Microbiome. 2020;8:17.

    Google Scholar 

  • 24.

    Zhang S, Raza W, Yang X, Hu J, Huang Q, Xu Y, et al. Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biol Fertil Soils. 2008;44:1073.

    Google Scholar 

  • 25.

    Fu L, Penton CR, Ruan Y, Shen Z, Xue C, Li R, et al. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biol Biochem. 2017;104:39–48.

    CAS  Google Scholar 

  • 26.

    Shen Z, Ruan Y, Xue C, Zhong S, Li R, Shen Q, et al. Soils naturally suppressive to banana Fusarium wilt disease harbor unique bacterial communities. Plant. 2015;393:21–33.

    CAS  Google Scholar 

  • 27.

    De Corato U, Patruno L, Avella N, Salimbeni R, Lacolla G, Cucci G, et al. Soil management under tomato-wheat rotation increases the suppressive response against Fusarium wilt and tomato shoot growth by changing the microbial composition and chemical parameters. Appl Soil Ecol. 2020;154:103601.

    Google Scholar 

  • 28.

    Zhou D, Jing T, Chen Y, Wang F, Qi D, Feng R, et al. Deciphering microbial diversity associated with Fusarium wilt-diseased and disease-free banana rhizosphere soil. BMC Microbiol. 2019;19:161.

    PubMed  PubMed Central  Google Scholar 

  • 29.

    da C Jesus E, Marsh TL, Tiedje JM, de S Moreira FM. Changes in land use alter the structure of bacterial communities in Western Amazon soils. ISME J. 2009;3:1004–11.

    Google Scholar 

  • 30.

    Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA. 2006;103:626–31.

  • 31.

    Mercado-Blanco J, Abrantes I, Barra Caracciolo A, Bevivino A, Ciancio A, Grenni P, et al. Belowground microbiota and the health of tree crops. Front Microbiol. 2018;9:1006.

    PubMed  PubMed Central  Google Scholar 

  • 32.

    Ramirez KS, Knight CG, de Hollander M, Brearley FQ, Constantinides B, Cotton A, et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat Microbiol. 2018;3:189–96.

    CAS  PubMed  Google Scholar 

  • 33.

    Qiu M, Zhang R, Xue C, Zhang S, Li S, Zhang N, et al. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil. Biol Fertil Soils. 2012;48:807–16.

    CAS  Google Scholar 

  • 34.

    Wang B, Li R, Ruan Y, Ou Y, Zhao Y, Shen Q. Pineapple–banana rotation reduced the amount of Fusarium oxysporum more than maize–banana rotation mainly through modulating fungal communities. Soil Biol Biochem. 2015b;86:77–86.

    CAS  Google Scholar 

  • 35.

    Alabouvette C. Fusarium wilt suppressive soils: an example of disease-suppressive soils. Australas Plant Pathol. 1999;28:57–64.

    Google Scholar 

  • 36.

    Hornby D. Suppressive soils. Australas Plant Pathol. 1983;21:65–85.

    Google Scholar 

  • 37.

    Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

  • 38.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.

    PubMed  PubMed Central  Google Scholar 

  • 40.

    McDonald D, Clemente JC, Kuczynski J, Rideout JR, Stombaugh J, Wendel D, et al. The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. GigaScience. 2012;1:7.

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Liaw A, Wiener M. Classification and regression by randomForest. R N. 2002;2:18–22.

    Google Scholar 

  • 42.

    Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–97.

    Google Scholar 

  • 43.

    Wright RE. Logistic regression. In Grimm LG, & Yarnold PR, (Eds), Reading and understanding multivariate statistics (p. 217–244). Washington, DC: American Psychological Association; 1995.

  • 44.

    Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc. 1996;58:267–88.

    Google Scholar 

  • 45.

    Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: visualizing classifier performance in R. Bioinformatics. 2005;21:3940–1.

    CAS  PubMed  Google Scholar 

  • 46.

    Statnikov A, Henaff M, Narendra V, Konganti K, Li Z, Yang L, et al. A comprehensive evaluation of multicategory classification methods for microbiomic data. Microbiome. 2013;1:11.

    PubMed  PubMed Central  Google Scholar 

  • 47.

    Zhang J, Liu Y-X, Zhang N, Hu B, Jin T, Xu H, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol. 2019;37:676–84.

    CAS  PubMed  Google Scholar 

  • 48.

    Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8:e1002687.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Csardi G, Nepusz T. The igraph software package for complex network research. Int J Complex Syst. 2006;1695:1–9.

    Google Scholar 

  • 50.

    Newman ME. The structure and function of complex networks. SIAM Rev. 2003;45:167–56.

    Google Scholar 

  • 51.

    Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. Msystems. 2016;1:e00009–15.

    PubMed  Google Scholar 

  • 52.

    McKay G, Brown AE, Bjourson A, Mercer P. Molecular characterisation of Alternaria linicola and its detection in linseed. Eur J Plant Pathol. 1999;105:157–66.

    CAS  Google Scholar 

  • 53.

    Adams RI, Bateman AC, Bik HM, Meadow JF. Microbiota of the indoor environment: a meta-analysis. Microbiome. 2015;3:49.

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Cornejo-Granados F, Gallardo-Becerra L, Leonardo-Reza M, Ochoa-Romo JP, Ochoa-Leyva A. A meta-analysis reveals the environmental and host factors shaping the structure and function of the shrimp microbiota. PeerJ. 2018;6:e5382.

    PubMed  PubMed Central  Google Scholar 

  • 55.

    Koren O, Knights D, Gonzalez A, Waldron L, Segata N, Knight R, et al. A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLoS Comput Biol. 2013;9:e1002863.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat Commun. 2017;8:1784.

    PubMed  PubMed Central  Google Scholar 

  • 57.

    Rocca JD, Simonin M, Blaszczak JR, Ernakovich JG, Gibbons SM, Midani FS, et al. The Microbiome Stress Project: towards a global meta-analysis of environmental stressors and their effects on microbial communities. Front Microbiol. 2018;9:3272.

    PubMed  Google Scholar 

  • 58.

    Gonzalez A, Navas-Molina JA, Kosciolek T, McDonald D, Vázquez-Baeza Y, Ackermann G, et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat Methods. 2018;15:796–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Baxter NT, Ruffin MT, Rogers MA, Schloss PD. Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Med. 2016;8:37.

    PubMed  PubMed Central  Google Scholar 

  • 60.

    Belk A, Xu ZZ, Carter DO, Lynne A, Bucheli S, Knight R, et al. Microbiome data accurately predicts the postmortem interval using random forest regression models. Genes. 2018;9:104.

    PubMed Central  Google Scholar 

  • 61.

    Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551:585–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Manici L, Caputo F. Fungal community diversity and soil health in intensive potato cropping systems of the east Po valley, northern Italy. Ann Appl Biol. 2009;155:245–58.

    Google Scholar 

  • 63.

    Ploetz RC. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology. 2006;96:653–6.

    PubMed  Google Scholar 

  • 64.

    Shen Z, Xue C, Taylor PWJ, Ou Y, Wang B, Zhao Y, et al. Soil pre-fumigation could effectively improve the disease suppressiveness of biofertilizer to banana Fusarium wilt disease by reshaping the soil microbiome. Biol Fertil Soils. 2018;54:793–806.

    CAS  Google Scholar 

  • 65.

    Wang B, Li R, Ruan Y, Ou Y, Zhao Y, Shen Q. Pineapple–banana rotation reduced the amount of Fusarium oxysporum more than maize–banana rotation mainly through modulating fungal communities. Soil Biol Biochem. 2015a;86:77–86.

    CAS  Google Scholar 

  • 66.

    Wu X, Guo S, Jousset A, Zhao Q, Shen Q. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome. Soil Biol Biochem. 2017;114:238–47.

    Google Scholar 

  • 67.

    Forsyth LM, Smith LJ, Aitken EA. Identification and characterization of non-pathogenic Fusarium oxysporum capable of increasing and decreasing Fusarium wilt severity. Mycological Res. 2006;110:929–35.

    Google Scholar 

  • 68.

    Lemanceau P, Alabouvette C. Biological control of fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium. Crop Prot. 1991;10:279–86.

    Google Scholar 

  • 69.

    Liu L, Kong J, Cui H, Zhang J, Wang F, Cai Z, et al. Relationships of decomposability and C/N ratio in different types of organic matter with suppression of Fusarium oxysporum and microbial communities during reductive soil disinfestation. Biol Control. 2016;101:103–13.

    CAS  Google Scholar 

  • 70.

    Pieretti I, Royer M, Barbe V, Carrere S, Koebnik R, Cociancich S, et al. The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae. BMC genomics. 2009;10:616.

    PubMed  PubMed Central  Google Scholar 

  • 71.

    Li X, Zhang YN, Ding C, Jia Z, He Z, Zhang T, et al. Declined soil suppressiveness to Fusarium oxysporum by rhizosphere microflora of cotton in soil sickness. Biol Fertil soils. 2015;51:935–46.

    Google Scholar 

  • 72.

    Wu L, Yang B, Li M, Chen J, Xiao Z, Wu H, et al. Modification of rhizosphere bacterial community structure and functional potentials to control pseudostellaria heterophylla replant disease. Plant Dis. 2019;104:25–34.

    PubMed  Google Scholar 

  • 73.

    Shang Q, Yang G, Wang Y, Wu X, Zhao X, Hao H, et al. Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants grown in the field. World J Microbiol Biotechnol. 2016;32:95.

    PubMed  Google Scholar 

  • 74.

    Abbasi S, Safaie N, Sadeghi A, Shamsbakhsh M. Streptomyces strains induce resistance to Fusarium oxysporum f. sp. lycopersici race 3 in tomato through different molecular mechanisms. Front Microbiol. 2019;10:1505.

    PubMed  PubMed Central  Google Scholar 

  • 75.

    Liotti RG, da Silva Figueiredo MI, Soares MA. Streptomyces griseocarneus R132 controls phytopathogens and promotes growth of pepper (Capsicum annuum). Biol Control. 2019;138:104065.

    CAS  Google Scholar 

  • 76.

    Tahvonen R. Microbial control of plant diseases with Streptomyces spp. 1. Eppo Bull. 2010;18:55–9.

    Google Scholar 

  • 77.

    Yang Y, Zhang S-W, Li K-t. Antagonistic activity and mechanism of an isolated Streptomyces corchorusii stain AUH-1 against phytopathogenic fungi. World J Microbiol Biotechnol. 2019;35:145.

    PubMed  Google Scholar 

  • 78.

    Cha J-Y, Han S, Hong H-J, Cho H, Kim D, Kwon Y, et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 2015;10:119–29.

    PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Differential impact of thermal and physical permafrost disturbances on High Arctic dissolved and particulate fluvial fluxes

    Putting wind dispersal in context