in

Unravelling the different causes of nitrate and ammonium effects on coral bleaching

  • 1.

    Dubinsky, Z. & Jokiel, P. L. Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pac. Sci. 48, 313–324 (1994).

    Google Scholar 

  • 2.

    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018).

    CAS  PubMed  Google Scholar 

  • 3.

    Falkowski, P. G., Dubinsky, Z., Muscatine, L. & Porter, J. W. Light and the bioenergetics of a symbiotic coral. Bioscience 34, 705–709 (1984).

    CAS  Google Scholar 

  • 4.

    Grover, R., Maguer, J.-F., Reynaud-Vaganay, S. & Ferrier-Pagès, C. Uptake of ammonium by the scleractinian coral Stylophora pistillata: effect of feeding, light, and ammonium concentrations. Limnol. Oceanogr. 47, 782–790 (2002).

    ADS  Google Scholar 

  • 5.

    Grover, R., Maguer, J.-F., Allemand, D. & Ferrier-Pagès, C. Nitrate uptake in the scleractinian coral Stylophora pistillata. Limnol. Oceanogr. 48, 2266–2274 (2003).

    ADS  CAS  Google Scholar 

  • 6.

    Godinot, C., Ferrier-Pagès, C. & Grover, R. Kinetics of phosphate uptake by the scleractinian coral Stylophora pistillata. Limnol. Oceanogr. 54, 1627–1633 (2009).

    ADS  Google Scholar 

  • 7.

    Muscatine, L., McCloskey, L. R. & Marian, R. E. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601–611 (1981).

    ADS  CAS  Google Scholar 

  • 8.

    Trembley, P., Grover, R., Maguer, J.-F., Legendre, L. & Ferrier-Pagè, C. Autotrophic carbon budget in coral tissue: a new 13C-based model of photosynthate translocation. J. Exp. Biol. 215, 1384–1393 (2012).

    Google Scholar 

  • 9.

    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 10.

    Claar, D. C., Szostek, L., McDevitt-Irwin, J. M., Schanze, J. J. & Baum, J. K. Global patterns and impacts of El Niño events on coral reefs: A meta-analysis. PLoS ONE 13, e0190957 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 11.

    Lough, J. M., Anderson, K. D. & Ughes, T. P. Increasing thermal stress for tropical coral reefs: 1871–2017. Sci. Rep. 8, 6079 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 13.

    Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Mar. Biol. 166, 108 (2019).

    Google Scholar 

  • 14.

    Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Chang. 3, 160–164 (2013).

    ADS  CAS  Google Scholar 

  • 15.

    Burkepile, D. E. et al. Nitrogen identity drives differential impacts of nutrients on coral bleaching and mortality. Ecosystems https://doi.org/10.1007/s10021-019-00433-2 (2019).

    Article  Google Scholar 

  • 16.

    Shantz, A. A. & Burkepile, D. E. Context-dependent effects of nutrient loading on the coral-algal mutualism. Ecology 95, 1995–2005 (2014).

    PubMed  Google Scholar 

  • 17.

    Nordemar, I., Nyströn, M. & Dizon, R. Effects of elevated seawater temperature and nitrate enrichment on the branching coral Porites cylindrica in the absence of particulate food. Mar. Biol. 142, 669–677 (2003).

    CAS  Google Scholar 

  • 18.

    Béraud, E., Gevaert, F., Rottier, C. & Ferrier-Pagès, C. The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont. J. Exp. Biol. 216, 2665–2674 (2013).

    PubMed  Google Scholar 

  • 19.

    Ezzat, L., Maguer, J.-F., Grover, R. & Ferrier-Pagès, C. Limited phosphorus availability is the Achilles heel of tropical reef corals in a warming ocean. Sci. Rep. 6, 31768 (2015).

    ADS  Google Scholar 

  • 20.

    Lesser, M. P. Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol. Oceanogr. 41, 271–283 (1996).

    ADS  CAS  Google Scholar 

  • 21.

    Lesser, M. P. Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16, 187–192 (1997).

    ADS  Google Scholar 

  • 22.

    Lesser, M. P. Oxidative stress in marine environments: biochemistry and physiological Ecology. Annu. Rev. Physiol. 68, 253–278 (2006).

    CAS  PubMed  Google Scholar 

  • 23.

    Downs, C. A. et al. Oxidative stress and seasonal coral bleaching. Free Rad. Biol. Med. 33, 533–543 (2002).

    CAS  PubMed  Google Scholar 

  • 24.

    Perez, S. & Weis, V. Nitric oxide and cnidarians bleaching: an eviction notice mediates breakdown of a symbiosis. J. Exp. Biol. 209, 2804–2810 (2006).

    CAS  PubMed  Google Scholar 

  • 25.

    Weis, V. M. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211, 59–66 (2008).

    Google Scholar 

  • 26.

    Halliwell, B. & Gutteridge, J.M.C. (eds.) Free Radicals in Biology and Medicine. (Oxford, 2007).

  • 27.

    Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).

    PubMed  Google Scholar 

  • 28.

    Sokolova, I. M. Energy-Limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integ. Comp. Biol. 53, 597–608 (2013).

    Google Scholar 

  • 29.

    Dominguez-Valdivia, M. D. et al. Nitrogen nutrtion and antioxidant metabolism in ammonium-tolerant and –sensitive plants. Phys. Plant. 132, 359–369 (2008).

    CAS  Google Scholar 

  • 30.

    Bouchard, J. N. & Yamasaki, H. Heat stress stimulates nitric oxide production in Symbiodinium microadriaticum: a possible linkage between nitric oxide and the coral bleaching phenomenon. Plant. Cell Physiol. 49, 641–652 (2008).

    CAS  PubMed  Google Scholar 

  • 31.

    Yamasaki, H. & Sakihama, Y. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reducatase: in vitro evidence for the NR*dependent formation of active nitrogen species. FEBS. 468, 89–92 (2000).

    CAS  Google Scholar 

  • 32.

    Bethke, P. C., Badger, M. R. & Jones, R. L. Apoplastic synthesis of nitric oxide by plant tissues. Plant. Cell. 16, 332–341 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 33.

    Tischner, R., Planchet, E. & Kaiser, W. M. Mitochondrial electron transport as a source of nitric oxide in the unicellular green algae Chlorella sorokiniana. FEBS Lett. 576, 151–155 (2004).

    CAS  PubMed  Google Scholar 

  • 34.

    Planchet, E., Gupta, K. J., Sonoda, M. & Kaiser, W. M. Nitric oxide emission from tabacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant. J. 41, 732–743 (2005).

    CAS  PubMed  Google Scholar 

  • 35.

    Bartesaghi, S. & Radi, R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox. Biol. 14, 618–625 (2018).

    CAS  PubMed  Google Scholar 

  • 36.

    Brodie, J., Devlin, M., Heynes, D. & Waterhouse, J. Assessment of the eutrophication status of the Great Barrier Reef lagoon (Australia). Biogeochemistry 106, 281–302 (2011).

    CAS  Google Scholar 

  • 37.

    Govers, L. L., Lamers, L. P., Bouma, T. J., de Brouwer, J. H. & van Katwijk, M. M. Eutrophication threatens Caribbean seagrass: an example from Curaçao and Bonaire. Mar. Poll. Bull. 89, 481–486 (2014).

    CAS  Google Scholar 

  • 38.

    Naumann, M. S., Bednarz, V. N., Ferse, S. C., Niggl, W. & Wild, C. Monitoring of coastal coral reefs near Dahab (Gulf of Aqaba, red sea) indicates local eutrophication as potential cause for change in benthic communities. Environ. Monit. Assess. 187, 1–14 (2015).

    CAS  Google Scholar 

  • 39.

    Rouzé, H., Lecellier, G., Langlade, M., Planes, S. & Berteaux-Lecellier, V. Fringing reefs exposed to different levels of eutrophication and sedimentation can support similar benthic communities. Mar. Pollut. Bull. 92, 212–221 (2015).

    PubMed  Google Scholar 

  • 40.

    Hoogenboom, M., Beraud, E. & Ferrier-Pagè, C. Relationship between symbiont density and photosynthetic carbon acquisition in the temperate coral Cladocora caespitosa. Coral Reefs 29, 21–29 (2010).

    ADS  Google Scholar 

  • 41.

    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 7, 248–254 (1976).

    Google Scholar 

  • 42.

    Jeffrey, S. & Humphrey, G. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pfl. 167, 191–194 (1975).

    CAS  Google Scholar 

  • 43.

    Veal, C. J., Carmi, M., Fine, M. & Hoegh-Guldberg, O. Increasing the accuracy of surface area estimation using single wax dipping of coral fragments. Coral Reefs 29, 893–897 (2010).

    ADS  Google Scholar 

  • 44.

    Jones, R. J., Kildea, T. & Hoegh-Guldberg, O. PAM chlorophyll fluorometry: a new in situ technique for stress assessment in scleractinian corals, used to examine the effects of cyanide from cyanide fishing. Mar. Pollut. Bull. 38, 864–874 (1999).

    CAS  Google Scholar 

  • 45.

    Jones, R. The ecotoxicological effects of photosystem II herbicides on corals. Mar. Pollut. Bull. 51, 495–506 (2005).

    CAS  PubMed  Google Scholar 

  • 46.

    Davies, P. S. Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar. Biol. 101, 389–395 (1989).

    Google Scholar 

  • 47.

    Aguiar, R. B. et al. Estradiol valerate and tibolone: effects upon brain oxidative stress and blood biochemistry during aging in female rats. Biogerontology 9, 285–298 (2008).

    CAS  PubMed  Google Scholar 

  • 48.

    Oakes, K. D. & van der Kraak, G. J. Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquat. Toxicol. 63, 447–463 (2003).

    CAS  PubMed  Google Scholar 

  • 49.

    Huang, D., Ou, B. & Prior, R. L. The chemistry behind antioxidant capacity assays. J. Agric. Food. Chem. 53, 1841–1856 (2005).

    CAS  PubMed  Google Scholar 

  • 50.

    Sokolova, I. M., Frederich, M., Bagwe, R., Lanning, G. & Sukhotin, A. A. Energy homeostasis as an integrative tool for assessing limits of envirnmental stress tolerance in aquatic organisms. Mar. Environ. Res. 79, 1–15 (2012).

    CAS  PubMed  Google Scholar 

  • 51.

    Underwood, A. J. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance (Cambridge University Press, Cambridge, U.K., 1997).

    Google Scholar 

  • 52.

    Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 35, 1147–1150 (2007).

    CAS  PubMed  Google Scholar 

  • 53.

    Havaux, M. & Niyogi, K. K. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc. Natl. Acad. Sci. USA 96, 8762–8767 (1999).

    ADS  CAS  PubMed  Google Scholar 

  • 54.

    Tardy, F. & Havaux, M. Thylakoid membrane fluidity and thermostability during the operation of the xanthophyll cycle in higher-plant chloroplasts. Biochim. Biophys. Acta. 1330, 179–193 (1997).

    CAS  PubMed  Google Scholar 

  • 55.

    Downs, C. A., Mueller, E., Phillips, S., Fauth, J. E. & Woodley, C. M. A molecular biomarker system for assessing the health of coral (Montastrea faveolata) during heat stress. Mar. Biotechnol. 2, 533–544 (2000).

    CAS  PubMed  Google Scholar 

  • 56.

    Krueger, T. et al. Differential coral bleaching—contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. Comp. Biochem. Physiol. Part A: Mol. Integ. Physiol. 190, 15–25 (2015).

    CAS  Google Scholar 

  • 57.

    Marangoni, L. F. B. et al. Oxidative stress biomarkers as potential tools in reef degradation monitoring: a study case in a South Atlantic reef under influence of the 2015–2016 El Niño/Southern Oscillation (ENSO). Ecol. Ind. 106, 105533 (2019).

    CAS  Google Scholar 

  • 58.

    Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral-Symbiodiniaceae Symbioses. Trends Microbiol. 8, 678–689 (2019).

    Google Scholar 

  • 59.

    Axenov-Gribanov, D. V. et al. A cellular and metabolic assessment of the thermal stress responses in the endemic gastropod Benedictia limnaeoides ongurensis from Lake Baikal. Comp. Biochem. Physiol. Part B. 167, 16–22 (2013).

    Google Scholar 

  • 60.

    Larade, S. & Storey, K. B. A profile of metabolic responses to anoxia in marine invertebrates. In Sensing, Signaling and Cell Adaptation (eds Storey, K. B. & Storey, J. M.) 27–46 (Elsevier, Amsterdam, 2002).

    Google Scholar 

  • 61.

    Philip, A., Macdonald, A. L. & Watt, P. W. Lactate—a signal coordinating cell and systemic function. J. Exp. Biol. 208, 4561–4575 (2005).

    Google Scholar 

  • 62.

    Riobò, N. A. et al. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation. Biochem. J. 359, 139–145 (2001).

    PubMed  PubMed Central  Google Scholar 

  • 63.

    Wang, Y. & Ruby, E. G. The roles of NO in microbial symbioses. Cell. Microbiol. 13, 518–526 (2013).

    Google Scholar 

  • 64.

    Higuchi, T., Yuyama, I. & Nakamura, T. The combined effects of nitrate with high temperature and high light intensity on coral bleaching and antioxidant enzyme activities. Reg. S. Mar. Sci. 2, 27–31 (2015).

    Google Scholar 

  • 65.

    Muscatine, L. & Porter, J. W. Reef corals-mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27, 454–460 (1977).

    Google Scholar 

  • 66.

    Ezzat, L., Maguer, J.-F., Grover, R. & Ferrier-Pagès, C. New insights into carbon acquisition and exchanges within the coral-dinoflagellate symbiosis under NH4+ and NO3 supply. Proc. R. Soc. B. 282, 20150610 (2015).

    PubMed  Google Scholar 

  • 67.

    Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2013).

    ADS  Google Scholar 

  • 68.

    Meyer, J. L. & Schultz, E. T. Migrating haemulid fishes as a source of nutrients and organic matter on coral reefs. Limnol. Oceanogr. 30, 146–156 (1985).

    ADS  Google Scholar 


  • Source: Ecology - nature.com

    Preying on seals pushes killer whales from Norway above pollution effects thresholds

    Fatty acid analyses provide novel insights on hippo defecation and consequences for aquatic food webs