in

Dominant bee species and floral abundance drive parasite temporal dynamics in plant-pollinator communities

  • 1.

    Pongsiri, M. J. et al. Biodiversity loss affects global disease ecology. BioScience 59, 945–954 (2009).

    Google Scholar 

  • 2.

    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    CAS  PubMed  Google Scholar 

  • 3.

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

    CAS  PubMed  Google Scholar 

  • 4.

    Sala, O. E. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2000).

    Google Scholar 

  • 5.

    Anderson, P. K. et al. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19, 535–544 (2004).

    PubMed  Google Scholar 

  • 6.

    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287, 443–449 (2000).

    CAS  PubMed  Google Scholar 

  • 7.

    Johnson, P. T. J. J., de Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 8.

    Goulson, D., Lye, G. C. & Darvill, B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 53, 191–208 (2008).

    CAS  PubMed  Google Scholar 

  • 9.

    Williams, P. H. & Osborne, J. L. Bumblebee vulnerability and conservation world-wide. Apidologie 40, 367–387 (2009).

    Google Scholar 

  • 10.

    Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).

  • 11.

    Gallai, N., Salles, J. M., Settele, J. & Vaissiere, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).

    Google Scholar 

  • 12.

    Paull, S. H. et al. From superspreaders to disease hotspots: linking transmission across hosts and space. Front. Ecol. Environ. 10, 75–82 (2012).

    PubMed  Google Scholar 

  • 13.

    Wood, C. L. et al. Does biodiversity protect humans against infectious disease? Ecology 95, 817–832 (2014).

    PubMed  Google Scholar 

  • 14.

    Salkeld, D. J., Padgett, K. A. & Jones, J. H. A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic. Ecol. Lett. 16, 679–686 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 15.

    Wood, C. L. & Lafferty, K. D. Biodiversity and disease: a synthesis of ecological perspectives on Lyme disease transmission. Trends Ecol. Evol. 28, 239–247 (2013).

    PubMed  Google Scholar 

  • 16.

    Luis, A. D., Kuenzi, A. J. & Mills, J. N. Species diversity concurrently dilutes and amplifies transmission in a zoonotic host–pathogen system through competing mechanisms. Proc. Natl Acad. Sci. USA 115, 7979–7984 (2018).

    CAS  PubMed  Google Scholar 

  • 17.

    Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).

    CAS  PubMed  Google Scholar 

  • 18.

    Ostfeld, R. S. & Keesing, F. Biodiversity and disease risk: the case of Lyme disease. Conserv. Biol. 14, 722–728 (2000).

    Google Scholar 

  • 19.

    Schmidt, K. A. & Ostfeld, R. S. Biodiversity and the dilution effect in disease ecology. Ecology 82, 609–619 (2001).

    Google Scholar 

  • 20.

    Woolhouse, M. E. J., Dye, C. & Etard, J. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc. Natl Acad. Sci. USA 94, 338–342 (1997).

    CAS  PubMed  Google Scholar 

  • 21.

    Graystock, P., Goulson, D. & Hughes, W. O. H. Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc. R. Soc. B 282, 20151371 (2015).

    PubMed  Google Scholar 

  • 22.

    Rigaud, T., Perrot-Minnot, M.-J. & Brown, M. J. F. Parasite and host assemblages: embracing the reality will improve our knowledge of parasite transmission and virulence. Proc. R. Soc. B 277, 3693–3702 (2010).

    PubMed  Google Scholar 

  • 23.

    Adler, L. S. et al. Disease where you dine: plant species and floral traits associated with pathogen transmission in bumble bees. Ecology 99, 2535–2545 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 24.

    McFrederick, Q. S. et al. Flowers and wild megachilid bees share microbes. Microb. Ecol. 73, 188–200 (2017).

    PubMed  Google Scholar 

  • 25.

    CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant-pollinator networks. Ecol. Lett. 20, 385–394 (2017).

    PubMed  Google Scholar 

  • 26.

    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Piot, N. et al. Establishment of wildflower fields in poor quality landscapes enhances micro-parasite prevalence in wild bumble bees. Oecologia 189, 149–158 (2019).

    PubMed  Google Scholar 

  • 28.

    Theodorou, P. et al. Pollination services enhanced with urbanization despite increasing pollinator parasitism. Proc. R. Soc. B 283, 21060561 (2016).

  • 29.

    Graystock, P., Goulson, D. & Hughes, W. O. H. The relationship between managed bees and the prevalence of parasites in bumblebees. PeerJ 2, e522 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 30.

    Graystock, P., Blane, E. J., McFrederick, Q. S., Goulson, D. & Hughes, W. O. H. Do managed bees drive parasite spread and emergence in wild bees? Int. J. Parasitol. Parasites Wildl. 5, 64–75 (2016).

    PubMed  Google Scholar 

  • 31.

    Alger, S. A., Burnham, P. A., Boncristiani, H. F. & Brody, A. K. RNA virus spillover from managed honeybees (Apis mellifera) to wild bumblebees (Bombus spp.). PLoS ONE 14, e0217822 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Randolph, S. E. & Dobson, A. D. M. Pangloss revisited: a critique of the dilution effect and the biodiversity–buffers–disease paradigm. Parasitology 139, 847–863 (2012).

    CAS  PubMed  Google Scholar 

  • 33.

    LoGiudice, K. et al. Impact of host community on Lyme disease risk. Ecology 89, 2841–2849 (2008).

    PubMed  Google Scholar 

  • 34.

    Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Johnson, P. T. J., Lund, P. J., Hartson, R. B. & Yoshino, T. P. Community diversity reduces Schistosoma mansoni transmission, host pathology and human infection risk. Proc. R. Soc. B 276, 1657–1663 (2009).

    PubMed  Google Scholar 

  • 36.

    Mitchell, C. E., Tilman, D. & Groth, J. V. Effects of grassland plant species diversity, abundance, and composition on foliar fungal disease. Ecology 83, 1713–1726 (2013).

    Google Scholar 

  • 37.

    Johnson, P. T. J. & Thieltges, D. W. Diversity, decoys and the dilution effect: how ecological communities affect disease risk. J. Exp. Biol. 213, 961–970 (2010).

    CAS  PubMed  Google Scholar 

  • 38.

    Becker, D. J., Streicker, D. G. & Altizer, S. Linking anthropogenic resources to wildlife–pathogen dynamics: a review and meta-analysis. Ecol. Lett. 18, 483–495 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 39.

    Nunn, C. L., Thrall, P. H. & Kappeler, P. M. Shared resources and disease dynamics in spatially structured populations. Ecol. Modell. 272, 198–207 (2014).

    Google Scholar 

  • 40.

    Durrer, S. & Schmid-Hempel, P. Shared use of flowers leads to horizontal pathogen transmission. Proc. R. Soc. B 258, 299–302 (1994).

    Google Scholar 

  • 41.

    Figueroa, L. L. et al. Landscape simplification shapes pathogen prevalence in plant-pollinator networks. Ecol. Lett. https://doi.org/10.1111/ele.13521 (2020).

  • 42.

    Truitt, L. L., McArt, S. H., Vaughn, A. H. & Ellner, S. P. Trait-based modeling of multihost pathogen transmission: plant-pollinator networks. Am. Nat. 193, E149–E167 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Daszak, P. et al. Interdisciplinary approaches to understanding disease emergence: the past, present, and future drivers of Nipah virus emergence. Proc. Natl Acad. Sci. USA 110, 3681–3688 (2013).

    CAS  PubMed  Google Scholar 

  • 45.

    Lafferty, K. D. & Gerber, L. R. Good medicine for conservation biology: the intersection of epidemiology and conservation theory. Conserv. Biol. 16, 593–604 (2002).

    Google Scholar 

  • 46.

    Cottam, E. M. et al. Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus. Proc. R. Soc. B 275, 887–895 (2008).

    PubMed  Google Scholar 

  • 47.

    Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207–211 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 48.

    Pyšek, P. & Richardson, D. M. Invasive species, environmental change and management, and health. Annu. Rev. Environ. Resour. 35, 25–55 (2010).

    Google Scholar 

  • 49.

    Malone, J. D. et al. U.S. airport entry screening in response to pandemic influenza: modeling and analysis. Travel Med. Infect. Dis. 7, 181–191 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 50.

    Tatem, A. J., Rogers, D. J. & Hay, S. I. Global transport networks and infectious disease spread. Adv. Parasitol. 62, 293–343 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Nicolaides, C., Cueto-Felgueroso, L., González, M. C. & Juanes, R. A metric of influential spreading during contagion dynamics through the air transportation network. PLoS ONE 7, e40961 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Gardner, L. & Sarkar, S. A global airport-based risk model for the spread of dengue infection via the air transport network. PLoS ONE 8, e72129 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Urbanowicz, C. M., Muñiz, P. A. & McArt, S. H. Honey bees and wild bees differ in their preference for and use of introduced floral resources. Ecol. Evol. https://doi.org/10.1002/ece3.6417 (2020).

  • 54.

    Wiegand, K. M. & Eames, A. J. The Flora of the Cayuga Lake Basin, New York https://doi.org/10.5962/bhl.title.59518 (The University, 1926).

  • 55.

    Medina, B. F. & Medina, V. Central Appalachian Wildflowers (Falcon Guides, 2002).

  • 56.

    House, H. D. The Wild Flowers of New York (Univ. of New York Albany, 1918).

  • 57.

    Niering, W. A., Olmstead, N. C., Rayfield, S. & Nehring, C. National Audubon Society Field Guide to North American Wildflowers (Eastern Region) (AbeBooks, 1979).

  • 58.

    Ascher, J. S. & Pickering, J. DiscoverLife Bee Species Guide and World Checklist (Hymenoptera: Apoidea: Anthophila) (Discover Life, 2020); http://www.discoverlife.org/mp/20q?guide=Apoidea_species

  • 59.

    Gibbs, J. Revision of the metallic Lasioglossum (Dialictus) of eastern North America (Hymenoptera: Halictidae: Halictini). Zootaxa 216, 1–216 (2011).

    Google Scholar 

  • 60.

    Grixti, J. C., Wong, L. T., Cameron, S. A. & Favret, C. Decline of bumble bees (Bombus) in the North American Midwest. Biol. Conserv. 142, 75–84 (2009).

    Google Scholar 

  • 61.

    Sheffield, C. S., Ratti, C., Packer, L. & Griswold, T. Leafcutter and mason bees of the genus Megachile Latreille (Hymenoptera: Megachilidae) in Canada and Alaska. Can. J. Arthropod Identif. 18, 1–107 (2011).

    Google Scholar 

  • 62.

    Schwarz, R. S. & Evans, J. D. Single and mixed-species trypanosome and microsporidia infections elicit distinct, ephemeral cellular and humoral immune responses in honey bees. Dev. Comp. Immunol. 40, 300–310 (2013).

    CAS  PubMed  Google Scholar 

  • 63.

    Meeus, I., Brown, M. J. F., de Graaf, D. C. & Smagghe, G. Effects of invasive parasites on bumble bee declines. Conserv. Biol. 25, 662–671 (2011).

    PubMed  Google Scholar 

  • 64.

    Solter, L. F. in Microsporidia: Pathogens of Opportunity 1st edn (eds Weiss, L. M. & Becnel, J. J.) 165–194 (Wiley–Blackwell, 2014).

  • 65.

    Otti, O. & Schmid-Hempel, P. Nosema bombi: a pollinator parasite with detrimental fitness effects. J. Invertebr. Pathol. 96, 118–124 (2007).

    PubMed  Google Scholar 

  • 66.

    Graystock, P., Yates, K., Darvill, B., Goulson, D. & Hughes, W. O. H. Emerging dangers: deadly effects of an emergent parasite in a new pollinator host. J. Invertebr. Pathol. 114, 114–119 (2013).

    PubMed  Google Scholar 

  • 67.

    Fürst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 68.

    Otti, O. & Schmid-Hempel, P. A field experiment on the effect of Nosema bombi in colonies of the bumblebee Bombus terrestris. Ecol. Entomol. 33, 577–582 (2008).

    Google Scholar 

  • 69.

    Higes, M., Martín-Hernández, R. & Meana, A. Nosema ceranae in Europe: an emergent type C nosemosis. Apidologie 41, 375–392 (2010).

    Google Scholar 

  • 70.

    Li, J. et al. Diversity of Nosema associated with bumblebees (Bombus spp.) from China. Int. J. Parasitol. Parasites Wildl. 42, 49–61 (2012).

    CAS  Google Scholar 

  • 71.

    Sinpoo, C., Disayathanoowat, T., Williams, P. H. & Chantawannakul, P. Prevalence of infection by the microsporidian Nosema spp. in native bumblebees (Bombus spp.) in northern Thailand. PLoS ONE 14, e0213171 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 72.

    Müller, U., McMahon, D. P. & Rolff, J. Exposure of the wild bee Osmia bicornis to the honey bee pathogen Nosema ceranae. Agric. Entomol. 21, 363–371 (2019).

    Google Scholar 

  • 73.

    Bramke, K., Müller, U., McMahon, D. P. & Rolff, J. Exposure of larvae of the solitary bee Osmia bicornis to the honey bee pathogen Nosema ceranae affects life history. Insects 10, 380 (2019).

    PubMed Central  Google Scholar 

  • 74.

    Brown, M. J. F., Schmid-Hempel, R. & Schmid-Hempel, P. Strong context-dependent virulence in a host–parasite system: reconciling genetic evidence with theory. J. Anim. Ecol. 72, 994–1002 (2003).

    Google Scholar 

  • 75.

    Yourth, C. P., Brown, M. J. F. & Schmid-Hempel, P. Effects of natal and novel Crithidia bombi (Trypanosomatidae) infections on Bombus terrestris hosts. Insectes Soc. 55, 86–90 (2008).

    Google Scholar 

  • 76.

    Brown, M. J. F., Loosli, R. & Schmid-Hempel, P. Condition-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos 91, 421–427 (2000).

    Google Scholar 

  • 77.

    Gegear, R. J., Otterstatter, M. C. & Thomson, J. D. Bumble-bee foragers infected by a gut parasite have an impaired ability to utilize floral information. Proc. R. Soc. B 273, 1073–1078 (2006).

    PubMed  Google Scholar 

  • 78.

    Imhoof, B. & Schmid-Hempel, P. Patterns of local adaptation of a protozoan parasite to its bumblebee host. Oikos 82, 59–65 (1998).

    Google Scholar 

  • 79.

    Dill, L. M. Costs of energy shortfall for bumble bee colonies: predation, social parasitism, and brood development. Can. Entomol. 123, 283–293 (1991).

    Google Scholar 

  • 80.

    Strobl, V., Yañez, O., Straub, L., Albrecht, M. & Neumann, P. Trypanosomatid parasites infecting managed honeybees and wild solitary bees. Int. J. Parasitol. 49, 605–613 (2019).

    PubMed  Google Scholar 

  • 81.

    Ravoet, J. et al. Differential diagnosis of the honey bee trypanosomatids Crithidia mellificae and Lotmaria passim. J. Invertebr. Pathol. 130, 21–27 (2015).

    PubMed  Google Scholar 

  • 82.

    Ngor, L. et al. Cross-infectivity of honey and bumble bee-associated parasites across three bee families. Parasitology https://doi.org/10.1017/S0031182020001018 (2020).

  • 83.

    Lipa, J. J. & Triggiani, O. Apicystis gen. nov. and Apicystis bombi (Liu, Macfarlane & Pengelly) comb. nov. (Protozoa: Neogregarinida), a cosmopolitan parasite of Bombus and Apis (Hymenoptera: Apidae). Apidologie 27, 29–34 (1996).

    Google Scholar 

  • 84.

    Graystock, P., Meeus, I., Smagghe, G., Goulson, D. & Hughes, W. O. H. The effects of single and mixed infections of Apicystis bombi and deformed wing virus in Bombus terrestris. Parasitology 143, 358–365 (2016).

    PubMed  Google Scholar 

  • 85.

    Maharramov, J. et al. Genetic variability of the neogregarine Apicystis bombi, an etiological agent of an emergent bumblebee disease. PLoS ONE 8, e81475 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 86.

    Rutrecht, S. T. & Brown, M. J. F. The life-history impact and implications of multiple parasites for bumble bee queens. Int. J. Parasitol. 38, 799–808 (2008).

    PubMed  Google Scholar 

  • 87.

    Plischuk, S., Meeus, I., Smagghe, G. & Lange, C. E. Apicystis bombi (Apicomplexa: Neogregarinorida) parasitizing Apis mellifera and Bombus terrestris (Hymenoptera: Apidae) in Argentina. Environ. Microbiol. Rep. 3, 565–568 (2011).

    PubMed  Google Scholar 

  • 88.

    Tian, T., Piot, N., Meeus, I. & Smagghe, G. Infection with the multi-host micro-parasite Apicystis bombi (Apicomplexa: Neogregarinorida) decreases survival of the solitary bee Osmia bicornis. J. Invertebr. Pathol. 158, 43–45 (2018).

    PubMed  Google Scholar 

  • 89.

    Lacey, L. A. Manual of Techniques in Insect Pathology (Academic Press, 1997).

  • 90.

    Fries, I. et al. Standard methods for Nosema research. J. Apic. Res. 52, 1–28 (2013).

    Google Scholar 

  • 91.

    Mullins, J. L., Strange, J. P. & Tripodi, A. D. Why are queens broodless? Failed nest initiation not linked to parasites, mating status, or ovary development in two bumble bee species of Pyrobombus (Hymenoptera: Apidae: Bombus). J. Econ. Entomol. 113, 575–581 (2019).

  • 92.

    Schmid-Hempel, R. & Tognazzo, M. Molecular divergence defines two distinct lineages of Crithidia bombi (Trypanosomatidae), parasites of bumblebees. J. Eukaryot. Microbiol. 57, 337–345 (2010).

    CAS  PubMed  Google Scholar 

  • 93.

    Tripodi, A. D., Szalanski, A. L. & Strange, J. P. Novel multiplex PCR reveals multiple trypanosomatid species infecting North American bumble bees (Hymenoptera: Apidae: Bombus). J. Invertebr. Pathol. 153, 147–155 (2018).

    PubMed  Google Scholar 

  • 94.

    King, G. & Zeng, L. Logistic regression in rare events data. Polit. Anal. 9, 137–163 (2001).

    Google Scholar 

  • 95.

    Nelder, J. A. A reformulation of linear models. J. R. Stat. Soc. Ser. A 140, 48–77 (1977).

    Google Scholar 

  • 96.

    Venables, W. N. Exegeses on linear models. In SPLUS User’s Conference (2000); https://www.stats.ox.ac.uk/pub/MASS3/Exegeses.pdf

  • 97.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  • 98.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

  • 99.

    Brooks, Mollie et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9, 378–400 (2017).

    Google Scholar 

  • 100.

    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-level/Mixed) Regression Models. R package v.0.2.0 https://CRAN.R-project.org/package=DHARMa (2018).

  • 101.

    Signorell, A. DescTools: Tools for Descriptive Statistics https://cran.r-project.org/web/packages/DescTools/index.html (2019).

  • 102.

    Wood, S. N., Pya, N. & Säfken, B. Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 111, 1548–1563 (2016).

    CAS  Google Scholar 

  • 103.

    Engels, B. XNomial: Exact Goodness-of-Fit Test for Multinomial Data with Fixed Probabilities https://cran.r-project.org/web/packages/XNomial/vignettes/XNomial.html (2015).

  • 104.

    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).

    PubMed  Google Scholar 

  • 105.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.4-3 https://www.researchgate.net/publication/323265822_vegan_Community_Ecology_Package_R_package_version_24-3_2017_accessed_2016_Jan_1 (2017).


  • Source: Ecology - nature.com

    Global targets that reveal the social–ecological interdependencies of sustainable development

    Prediction of breeding regions for the desert locust Schistocerca gregaria in East Africa