He, J. S. et al. Stoichiometry and large-scale patterns of leaf C and nitrogen in the grassland biomes of China. Oecologia 149, 115–122 (2006).
Townsend, A. R., Cleveland, C. C., Asner, G. P. & Bustamante, M. M. C. Controls over foliar N:P ratios in tropical rain forests. Ecology 88, 107–118 (2007).
Hättenschwiler, S. et al. High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytol. 179, 165–175 (2008).
Zhou, G. et al. Climate and litter C/N ratio constrain soil organic carbon accumulation. Nat. Sci. Rev. 6, 746–757 (2019).
Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).
Xu, S. et al. Different spatial patterns of nitrogen and phosphorus resorption efficiencies in China’s forests. Sci. Rep. 7, 10584 (2017).
Elser, J. J. et al. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytol. 186, 593–608 (2010).
Sardans, J., Rivas-Ubach, A. & Peñuelas, J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: A review and perspectives. Biogeochemistry 111, 1–39 (2011).
Peñuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. commun. 4, 2934 (2013).
Yuan, Z. Y. & Chen, H. Y. H. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nat. Clim. Change 5, 465–469 (2015).
Lindroth, R. L. et al. Consequences of elevated C dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera). Environ. Pollut. 115, 395–404 (2001).
Liu, L., King, J. S. & Giardina, C. P. Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch communities. Tree Physiol. 25, 1511–1522 (2005).
Luo, W. et al. C and nitrogen allocation shifts in plants and soils along aridity and fertility gradients in grasslands of China. Ecol. Evol. 7, 6927–6934 (2017).
Sardans, J., Rivas-Ubach, A. & Peñuelas, J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: A review and perspectives. Biogeochemistry 111, 1–39 (2012).
Sardans, J. et al. Changes in nutrient concentrations of leaves and roots in response to global change factors. Glob. Change Biol. 23, 3849–3856 (2017).
Yue, K. et al. Influence of multiple global change drivers on terrestrial carbon storage: additive effects are common. Ecol. Lett. 20, 663–672 (2017).
Paul, M. J. & Pellny, T. K. Carbon metabolite feedback regulation of leaf photosynthesis and development. J. Exp. Bot. 54, 539–547 (2003).
Flexas, J. et al. Keeping a positive C balance under adverse conditions: Responses of photosynthesis and respiration to water stress. Physiol. Plantarum 127, 343–352 (2006).
Chen, S., Lin, G., Huang, J. & Jenerette, G. D. Dependence of C sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Glob. Change Biol. 15, 2450–2461 (2009).
Booth, M. S., Stark, J. M. & Rastetter, E. Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data. Ecol. Monogr. 75, 139–157 (2005).
Zheng, M. H., Zhou, Z. H., Luo, Y. Q., Zhao, P. & Mo, J. M. Global pattern and controls of biological nitrogen fixation under nutrient enrichment: A meta-analysis. Glob. Change Biol. 00, 1–13 (2019).
Barnard, R. & Leadley, P. W. Global change, nitrification, and denitrification: A review. Glob. Biogeochem. Cycle. https://doi.org/10.1029/2004GB002282 (2005).
Lu, M. et al. Responses of ecosystem nitrogen cycle to nitrogen addition: A meta-analysis. New Phytol. 189, 1040–1050 (2011).
King, K. W. et al. Phosphorus transport in agricultural subsurface drainage: A review. J. Environ. Qual. 44, 467–485 (2014).
Hou, E. et al. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Glob. Change Biol. 24, 3344–3356 (2018).
Yuan, Z. Y. et al. Experimental and observational studies find contrasting responses of soil nutrients to climate change. eLife 6, e23255. https://doi.org/10.7554/eLife.23255 (2017).
Dunne, J. A., Saleska, S. R., Fischer, M. L. & Harte, J. Integrating experimental and gradient methods in ecological climate change research. Ecology 85, 904–916 (2004).
Kattge, J., Knorr, W., Raddatz, T. & Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob. Change Biol. 15, 976–991 (2009).
Invers, O., Kraemer, G. P., Pérez, M. & Romero, J. Effects of nitrogen addition on nitrogen metabolism and carbon reserves in the temperate seagrass Posidonia oceanica. J. Exp. Mar. Biol. Ecol. 303, 97–114 (2004).
Throop, H. L. & Lerdau, M. T. Effects of nitrogen deposition on insect herbivory: Implications for community and ecosystem processes. Ecosystems 7, 109–133 (2004).
Homyak, P. E. et al. Effect of drought manipulation on soil nitrogen cycling: A meta-analysis. J. Geophys. Res.-Biogeosci. 122, 3260–3272 (2017).
Tharayil, N. et al. Changes in the structural composition and reactivity of Acer rubrum leaf litter tannins exposed to warming and altered precipitation: Climatic stress-induced tannins are more reactive. New Phytol. 191, 132–145 (2011).
Tattini, M. et al. Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by drought-stressed Platanusxacerifolia plants during Mediterranean summers. New Phytol. 207, 613–626 (2015).
Bertiller, M. B., Sain, C. L., Carrera, A. L. & Vargas, D. N. Patterns of nitrogen and phosphorus conservation in dominant perennial grasses and shrubs across an aridity gradient in Patagonia Argentina. J. Arid Environ. 62, 209–223 (2005).
Lambers, H., Chapin, F. S. & Pons, T. L. Plant Physiological Ecology (Springer, New York, 2008).
Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).
Yuan, Z. Y. & Chen, H. Y. H. Negative effects of fertilization on plant nutrient resorption. Ecology 96, 373–380 (2015).
Keeler, B. L., Hobbie, S. E. & Kellogg, L. E. Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: Implications for litter and soil organic matter decomposition. Ecosystems 12, 1–15 (2008).
Marklein, A. R. & Houlton, B. Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol. 193, 696–704 (2012).
Staddon, P. L., Gregersen, R. & Jakobsen, I. The response of two Glomus mycorrhizal fungi and a fine endophyte to elevated atmospheric CO2, soil warming and drought. Glob. Change Biol. 10, 1909–1921 (2004).
He, M. & Dijsktra, F. A. Drought effect on plant nitrogen and phophorus: A meta-analysis. New Phytol. 204, 924–931 (2014).
Koricheva, J. & Gurevitch, J. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 102, 828–844 (2014).
Wickham, H. ggplot2: Elegant graphics for data analysis (Springer-Verlag, New York, 2009).
Baquero, O.S. ggsn: North symbols and scale bars for maps created with ‘ggplot2’ or ‘ggmap’. https://CRAN.R-project.org/package=ggsn (2017).
Gallic, E. legendMap: North arrow and scale bar for ggplot2 graphics. R package version 1.0 (2016).
Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta-analysis of ecological data. Ecology 78, 1277–1283 (1997).
Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
Adams, D. C. Phylogenetic meta-analysis. Evolution 62, 567–572 (2008).
Yan, K. et al. Caution is needed in quantifying terrestrial biomass responses to elevated temperature: Meta-analyses of field-based experimental warming across China. Forests 9, 619 (2018).
Source: Ecology - nature.com