in

Effects of prey trophic mode on the gross-growth efficiency of marine copepods: the case of mixoplankton

  • 1.

    Almeda, R. et al. Trophic role and carbon budget of metazoan microplankton in northwest Mediterranean coastal waters. Limnol. Oceanogr. 56, 415–430 (2011).

    ADS  CAS  Google Scholar 

  • 2.

    Hansen, B., Bjornsen, P. K. & Hansen, P. J. The size ratio between planktonic predators and their prey. Limnol. Oceanogr. 39, 395–403 (1994).

    ADS  Google Scholar 

  • 3.

    Saiz, E., Griffell, K., Calbet, A. & Isari, S. Feeding rates and prey: predator size ratios of the nauplii and adult females of the marine cyclopoid copepod Oithona davisae. Limnol. Oceanogr. 59, 2077–2088 (2014).

    ADS  Google Scholar 

  • 4.

    Møller, E. F. Production of dissolved organic carbon by sloppy feeding in the copepods Acartia tonsa, Centropages typicus, and Temora longicornis. Limnol. Oceanogr. 52, 79–84 (2007).

    ADS  Google Scholar 

  • 5.

    Saiz, E., Calbet, A., Irigoien, X. & Alcaraz, M. Copepod egg production in the western Mediterranean: response to food availability in oligotrophic environments. Mar. Ecol. Prog. Ser. 187, 179–189 (1999).

    ADS  Google Scholar 

  • 6.

    Kiørboe, T. & Saiz, E. Planktivorous feeding in calm and turbulent environments, with emphasis on copepods. Mar. Ecol. Prog. Ser. 122, 135–146 (1995).

    ADS  Google Scholar 

  • 7.

    Broglio, E., Jónasdóttir, S. H., Calbet, A., Jakobsen, H. H. & Saiz, E. Effect of heterotrophic versus autotrophic food on feeding and reproduction of the calanoid copepod Acartia tonsa: relationship with prey fatty acid composition. Aquat. Microb. Ecol. 31, 267–278 (2003).

    Google Scholar 

  • 8.

    Kleppel, G. S. & Burkart, C. A. Egg production and the nutritional environment of Acartia tonsa: the role of food quality in copepod nutrition. ICES J. Mar. Sci. 52, 297–304 (1995).

    Google Scholar 

  • 9.

    Tang, K. W. & Dam, H. G. Limitation of zooplankton production: beyond stoichiometry. Oikos 84, 537–542 (1999).

    Google Scholar 

  • 10.

    Twining, B. S., Baines, S. B. & Fisher, N. S. Element stoichiometries of individual plankton cells collected during the Southern Ocean Iron Experiment (SOFeX). Limnol. Oceanogr. 49, 2115–2128 (2004).

    ADS  CAS  Google Scholar 

  • 11.

    Saiz, E. & Calbet, A. Copepod feeding in the ocean: scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations. Hydrobiologia 666, 181–196 (2011).

    CAS  Google Scholar 

  • 12.

    Broglio, E., Saiz, E., Calbet, A., Trepat, I. & Alcaraz, M. Trophic impact and prey selection by crustacean zooplankton on the microbial communities of an oligotrophic coastal area (NW Mediterranean Sea). Aquat. Microb. Ecol. 35, 65–78 (2004).

    Google Scholar 

  • 13.

    Irigoien, X. et al. Copepod hatching success in marine ecosystems with high diatom concentrations. Nature 419, 387–389 (2002).

    ADS  CAS  PubMed  Google Scholar 

  • 14.

    Stoecker, D. K., Hansen, P. J., Caron, D. A. & Mitra, A. Mixotrophy in the marine plankton. Ann. Rev. Mar. Sci. 9, 311–335 (2017).

    PubMed  Google Scholar 

  • 15.

    Flynn, K. J. et al. Mixotrophic protists and a new paradigm for marine ecology: where does plankton research go now?. J. Plankton Res. 41, 375–391 (2019).

    Google Scholar 

  • 16.

    Mitra, A. et al. Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition: incorporation of diverse mixotrophic strategies. Protist 167, 106–120 (2016).

    CAS  PubMed  Google Scholar 

  • 17.

    Ptacnik, R., Sommer, U., Hansen, T. & Martens, V. Effects of microzooplankton and mixotrophy in an experimental planktonic food web. Limnol. Oceanogr. 49, 1435–1445 (2004).

    ADS  Google Scholar 

  • 18.

    Moorthi, S. D. et al. The functional role of planktonic mixotrophs in altering seston stoichiometry. Aquat. Microb. Ecol. 79, 235–245 (2017).

    Google Scholar 

  • 19.

    Ward, B. A. & Follows, M. J. Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux. Proc. Natl. Acad. Sci. 113, 2958–2963 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 20.

    Waggett, R. J., Tester, P. A. & Place, A. R. Anti-grazing properties of the toxic dinoflagellate Karlodinium veneficum during predator-prey interactions with the copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 366, 31–42 (2008).

    ADS  Google Scholar 

  • 21.

    Xu, J., Nielsen, L. T. & Kiørboe, T. Foraging response and acclimation of ambush feeding and feeding-current feeding copepods to toxic dinoflagellates. Limnol. Oceanogr. 63, 1449–1461 (2018).

    ADS  Google Scholar 

  • 22.

    Berge, T., Poulsen, L. K., Moldrup, M., Daugbjerg, N. & Hansen, P. J. Marine microalgae attack and feed on metazoans. ISME J. 6, 1926–1936 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Vaqué, D. et al. Effects of the toxic dinoflagellate Karlodinium sp. (cultured at different N/P ratios) on micro and mesozooplankton. Sci. Mar. 70, 59–65 (2006).

    Google Scholar 

  • 24.

    Delgado, M. & Alcaraz, M. Interactions between red tide microalgae and herbivorous zooplankton: the noxious effects of Gyrodinium corsicum (Dinophyceae) on Acartia grani (Copepoda: Calanoida). J. Plankton Res. 21, 2361–2371 (1999).

    Google Scholar 

  • 25.

    D’Alelio, D. et al. The green-blue swing: plasticity of plankton food-webs in response to coastal oceanographic dynamics. Mar. Ecol. 36, 1155–1170 (2014).

    ADS  Google Scholar 

  • 26.

    Mitra, A. et al. The role of mixotrophic protists in the biological carbon pump. Biogeosciences 11, 995–1005 (2014).

    ADS  Google Scholar 

  • 27.

    Ho, P. C. et al. Body size, light intensity, and nutrient supply determine plankton stoichiometry in mixotrophic plankton food webs. Am. Nat. 195, E100–E111 (2020).

    PubMed  Google Scholar 

  • 28.

    Helenius, L. K. & Saiz, E. Feeding behaviour of the nauplii of the marine calanoid copepod Paracartia grani Sars: functional response, prey size spectrum, and effects of the presence of alternative prey. PLoS ONE 12, 1–20 (2017).

    Google Scholar 

  • 29.

    Henriksen, C. I., Saiz, E., Calbet, A. & Hansen, B. W. Feeding activity and swimming patterns of Acartia grani and Oithona davisae nauplii in the presence of motile and non-motile prey. Mar. Ecol. Prog. Ser. 331, 119–129 (2007).

    ADS  Google Scholar 

  • 30.

    Calbet, A. et al. Adaptations to feast and famine in different strains of the marine heterotrophic dinoflagellates Gyrodinium dominans and Oxyrrhis marina. Mar. Ecol. Prog. Ser. 483, 67–84 (2013).

    ADS  Google Scholar 

  • 31.

    Isari, S. & Saiz, E. Feeding performance of the copepod Clausocalanus lividus (Frost and Fleminger, 1968). J. Plankton Res. 33, 715–728 (2011).

    Google Scholar 

  • 32.

    Tong, M., Smith, J. L., Kulis, D. M. & Anderson, D. M. Role of dissolved nitrate and phosphate in isolates of Mesodinium rubrum and toxin-producing Dinophysis acuminata. Aquat. Microb. Ecol. 75, 169–185 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 33.

    Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579 (2000).

    ADS  CAS  Google Scholar 

  • 34.

    Li, A., Stoecker, D. K. & Coats, D. W. Mixotrophy in Gyrodinium galatheanum (Dinophyceae): grazing responses to light intensity and inorganic nutrients. J. Phycol. 36, 33–45 (2000).

    CAS  Google Scholar 

  • 35.

    Adolf, J. E., Bachvaroff, T. R. & Place, A. R. Environmental modulation of karlotoxin levels in strains of the cosmopolitan dinoflagellate, Karlodinium veneficum (Dinophyceae). J. Phycol. 45, 176–192 (2009).

    CAS  PubMed  Google Scholar 

  • 36.

    Sheng, J., Malkiel, E., Katz, J., Adolf, J. E. & Place, A. R. A dinoflagellate exploits toxins to immobilize prey prior to ingestion. Proc. Natl. Acad. Sci. 107, 2082–2087 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 37.

    Olivares, M., Saiz, E. & Calbet, A. Ontogenetic changes in the feeding functional response of the marine copepod Paracartia grani. Mar. Ecol. Prog. Ser. 616, 25–35 (2019).

    ADS  CAS  Google Scholar 

  • 38.

    Isari, S., Antó, M. & Saiz, E. Copepod foraging on the basis of food nutritional quality: can copepods really choose?. PLoS ONE 8, 1–12 (2013).

    Google Scholar 

  • 39.

    Saiz, E., Alcaraz, M. & Paffenhöfer, G. A. Effects of small-scale turbulence on feeding rate and gross-growth efficiency of three Acartia species (Copepoda: Calanoida). J. Plankton Res. 14, 1085–1097 (1992).

    Google Scholar 

  • 40.

    Calbet, A., Saiz, E. & Barata, C. Lethal and sublethal effects of naphthalene and 1,2-dimethylnaphthalene on the marine copepod Paracartia grani. Mar. Biol. 151, 195–204 (2007).

    CAS  Google Scholar 

  • 41.

    Saiz, E. & Kiørboe, T. Predatory and suspension feeding of the copepod Acartia tonsa in turbulent environments. Mar. Ecol. Prog. Ser. 122, 147–158 (1995).

    ADS  Google Scholar 

  • 42.

    Besiktepe, S. & Dam, H. G. Coupling of ingestion and defecation as a function of diet in the calanoid copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 229, 151–164 (2002).

    ADS  Google Scholar 

  • 43.

    Burian, A., Grosse, J., Winder, M. & Boschker, H. T. S. Nutrient deficiencies and the restriction of compensatory mechanisms in copepods. Funct. Ecol. 32, 636–647 (2018).

    Google Scholar 

  • 44.

    Berggreen, U., Hansen, B. & Kiørboe, T. Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implications for determination of copepod production. Mar. Biol. 99, 341–352 (1988).

    Google Scholar 

  • 45.

    Broglio, E., Johansson, M. & Jonsson, P. R. Trophic interaction between copepods and ciliates: effects of prey swimming behavior on predation risk. Mar. Ecol. Prog. Ser. 220, 179–186 (2001).

    ADS  Google Scholar 

  • 46.

    Feinberg, L. R. & Dam, H. G. Effects of diet on dimensions, density and sinking rates of fecal pellets of the copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 175, 87–96 (1998).

    ADS  Google Scholar 

  • 47.

    Dagg, M. J. & Walser, W. E. The effect of food concentration on fecal pellet size in marine copepods. Limnol. Oceanogr. 31, 1066–1071 (1986).

    ADS  CAS  Google Scholar 

  • 48.

    Liu, H., Chen, M., Zhu, F. & Harrison, P. J. Effect of diatom silica content on copepod grazing, growth and reproduction. Front. Mar. Sci. 3, 1–7 (2016).

    Google Scholar 

  • 49.

    Hansen, B., Fotel, F. L., Jensen, N. J. & Madsen, S. D. Bacteria associated with a marine planktonic copepod in culture. II. Degradation of fecal pellets produced on a diatom, a nanoflagellate or a dinoflagellate diet. J. Plankton Res. 18, 275–288 (1996).

    Google Scholar 

  • 50.

    Li, A., Stoecker, D. K. & Adolf, J. E. Feeding, pigmentation, photosynthesis and growth of the mixotrophic dinoflagellate Gyrodinium galatheanum. Aquat. Microb. Ecol. 19, 163–176 (1999).

    Google Scholar 

  • 51.

    Thor, P. & Wendt, I. Functional response of carbon absorption efficiency in the pelagic calanoid copepod Acartia tonsa Dana. Limnol. Oceanogr. 55, 1779–1789 (2010).

    ADS  Google Scholar 

  • 52.

    Saiz, E. et al. Ageing and caloric restriction in a marine planktonic copepod. Sci. Rep. 5, 1–10 (2015).

    Google Scholar 

  • 53.

    Calbet, A. et al. Intraspecific variability in Karlodinium veneficum: growth rates, mixotrophy, and lipid composition. Harmful Algae 10, 654–667 (2011).

    Google Scholar 

  • 54.

    Arias, A., Saiz, E. & Calbet, A. Towards an understanding of diel feeding rhythms in marine protists: consequences of light manipulation. Microb. Ecol. 79, 64–72 (2020).

    PubMed  Google Scholar 

  • 55.

    Hansen, P. J., Bjørnsen, P. K. & Hansen, B. W. Zooplankton grazing and growth: scaling within the 2–2,000-μm body size range. Limnol. Oceanogr. 42, 687–704 (1997).

    ADS  Google Scholar 

  • 56.

    Kleppel, G. S., Burkart, C. A. & Houchin, L. Nutrition and the regulation of egg production in the calanoid copepod Acartia tonsa. Limnol. Oceanogr. 43, 1000–1007 (1998).

    ADS  Google Scholar 

  • 57.

    Isari, S. et al. Lack of evidence for elevated CO2-induced bottom-up effects on marine copepods: a dinoflagellate–calanoid prey–predator pair. ICES J. Mar. Sci. 73, 650–658 (2016).

    Google Scholar 

  • 58.

    Miralto, A. et al. The insidious effect of diatoms on copepod reproduction. Nature 402, 173–176 (1999).

    ADS  CAS  Google Scholar 

  • 59.

    Rasmussen, S. A. et al. Karmitoxin: an amine-containing polyhydroxy-polyene toxin from the marine dinoflagellate Karlodinium armiger. J. Nat. Prod. 80, 1287–1293 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 60.

    Rodriguez, V., Guerreo, F. & Bautista, B. Egg production of individual copepods of Acartia grani Sars from coastal waters: seasonal and diel variability. J. Plankton Res. 17, 2233–2250 (1995).

    Google Scholar 

  • 61.

    Thingstad, T. F. et al. Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean. Science (80-) 309, 1068–1071 (2005).

    ADS  CAS  Google Scholar 

  • 62.

    Millette, N. C., Pierson, J. J., Aceves, A. & Stoecker, D. K. Mixotrophy in Heterocapsa rotundata: a mechanism for dominating the winter phytoplankton. Limnol. Oceanogr. 62, 836–845 (2016).

    ADS  Google Scholar 

  • 63.

    Ballen-Segura, M., Felip, M. & Catalan, J. Some mixotrophic flagellate species selectively graze on archaea. Appl. Environ. Microbiol. 83, 1–11 (2017).

    Google Scholar 

  • 64.

    Berge, T. & Hansen, P. J. Role of the chloroplasts in the predatory dinoflagellate Karlodinium armiger. Mar. Ecol. Prog. Ser. 549, 41–54 (2016).

    ADS  CAS  Google Scholar 

  • 65.

    Smith, M. & Hansen, P. J. Interaction between Mesodinium rubrum and its prey: importance of prey concentration, irradiance and pH. Mar. Ecol. Prog. Ser. 338, 61–70 (2007).

    ADS  Google Scholar 

  • 66.

    Saiz, E., Calbet, A., Trepat, I., Irigoien, X. & Alcaraz, M. Food availability as a potential source of bias in the egg production method for copepods. J. Plankton Res. 19, 1–14 (1997).

    Google Scholar 

  • 67.

    Frost, B. W. Effects of size and concentration of food particles on the feeding behaviour of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17, 805–815 (1972).

    ADS  Google Scholar 

  • 68.

    Saiz, E., Griffell, K. & Calbet, A. Ontogenetic changes in the elemental composition and stoichiometry of marine copepods with different life history strategies. J. Plankton Res. 42, 320–333 (2020).

    Google Scholar 


  • Source: Ecology - nature.com

    Discovery of a new mode of oviparous reproduction in sharks and its evolutionary implications

    Impact of 10-Myr scale monsoon dynamics on Mesozoic climate and ecosystems