in

Growth dynamics of galls and chemical defence response of Pinus thunbergii Parl. to the pine needle gall midge, Thecodiplosis japonensis Uchida & Inouye (Diptera: Cecidomyiidae)

  • 1.

    Allison, S. D. & Schultz, J. C. Biochemical responses of chestnut oak to a galling cynipid. J. Chem. Ecol. 31(1), 151–166 (2005).

    CAS  PubMed  Google Scholar 

  • 2.

    Arimura, G. et al. Effects of feeding Spodoptera littoralis on Lima bean leaves: iv. Diurnal and nocturnal damage differentially initiate plant volatile emission. Plant Physiol. 146(3), 965–973 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Delan, C. Effects of Apriona Germari Hope damage on the contents of tannin in poplar. Entomol. J. East China. 18(2), 94–100 (2009).

    Google Scholar 

  • 4.

    Chung, Y., Lee, J. & Lee, B. Effects of pine needle gall midge, Thecodiplosis Japonensis Uchida Et Inouye (Diptera: Cecidomyiidae), infestation on the shoot and needle growth of Pinus densiflora Sieb. Et Zucc. Fri J. For. Sci. (Seoul) 56, 21–29 (1997).

    Google Scholar 

  • 5.

    Crespi, B. J. & Worobey, M. Comparative analysis of gall morphology in Australian gall thrips: The evolution of extended phenotypes. Evolution 52(6), 1686–1696 (1998).

    PubMed  Google Scholar 

  • 6.

    Crespi, B. J., Carmean, A. D. A. & Chapman, T. W. Ecology and evolution of galling thrips and their allies. Annu. Rev. Entomol. 42(1), 51–71 (1997).

    CAS  PubMed  Google Scholar 

  • 7.

    Zhaodi, D. Inclusions Changes in Different Families of Pinus Massoniana Lamb Damaged by Hemiberlesia Pitysophila Takagi. (Fujian Agric. For. Univ, Fuzhou, 2009).

    Google Scholar 

  • 8.

    Dicke, M. & van Loon, J. J. A. Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol. Exp. Appl. 97, 237–249 (2000).

    CAS  Google Scholar 

  • 9.

    Dsouza, M. R. & Ravishankar, B. Nutritional sink formation in galls of Ficus glomerata Roxb. (Moraceae) by the insect Pauropsylla depressa (Psyllidae, Hemiptera). Trop. Ecol. 55(1), 129–136 (2014).

    Google Scholar 

  • 10.

    Espírito-Santo, M. M. & Fernandes, G. W. How many species of gall-inducing insects are there on earth, and where are they?. Ann. Entomol. Soc. Am. 100(2), 95–99 (2007).

    Google Scholar 

  • 11.

    Gagné, R.J., Jaschhof, M. A catalog of the Cecidomyiidae (Diptera) of the world. In 4th Edn. Digital. pp. 762 (2017)

  • 12.

    Hartley, S. E. Are gall insects large rhizobia?. Oikos 84(2), 333–342 (1999).

    Google Scholar 

  • 13.

    Zuodong, H. et al. Biological study of Aphidounguis Poniradicicola Zhang et Hu. Acta Agric. Boreali Occidentalis Sin. 8(2), 34–36 (1999).

    Google Scholar 

  • 14.

    Yunwei, Ju. et al. Physiological and biochemical responses of Distylium racemosum to gall’s formation. J. Fujian Coll. Forestry 32(1), 10–12 (2012).

    Google Scholar 

  • 15.

    Karley, A., Douglas, A. & Parker, W. Amino acid composition and nutritional quality of potato leaf phloem sap for aphids. J. Exp. Biol. 205(19), 3009–3018 (2002).

    CAS  PubMed  Google Scholar 

  • 16.

    Koyama, Y., Yao, I. & Akimoto, S. Aphid galls accumulate high concentrations of amino acids: A support for the nutrition hypothesis for gall formation. Entomol. Exp. Appl. 113(1), 35–44 (2004).

    CAS  Google Scholar 

  • 17.

    Lee, D. K. & Sung, J. H. Variation in photosynthesis and leaf pigments of susceptible Pinus densiflora and resistant Pinus rigida following pine gall midge attack. J. Korean Forestry Soc. 65, 1–11 (1984).

    Google Scholar 

  • 18.

    Lee, S. H. Biology and Control of Pine Gall Midge (Office of Forestry, Seoul, 1981).

    Google Scholar 

  • 19.

    Darin, Li., Enguo, W. & Lingwei, L. Study on biology characteristics and population dynamics of invasive Bemisia tabaci (Gennadius). China Plant Protect. Guide 32(1), 17–21 (2012).

    Google Scholar 

  • 20.

    Nuo, L. et al. Preliminary study on physiology and biochemistry characteristics of eucalyptus galls caused by Leptocy beinvasa LI. Anhui Agric. Sci. 38(8), 4126–4127 (2010).

    Google Scholar 

  • 21.

    Li, X. C., Schuler, M. A. & Berenhaum, M. R. Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature 419, 712–715 (2002).

    ADS  CAS  PubMed  Google Scholar 

  • 22.

    Xiangmei, L. A Comparative Study of the Amino Acids and Defensive Substances of the Gall and Host Plants of Andricus mukaigawae (Hunan Normal University, Changsha, 2019).

    Google Scholar 

  • 23.

    Xuan, Li. & Zhihong, H. The effect of ulmus gall aphid on the leaf physiology of elm. Jiangsu Agric. Sci. 47(10), 131–134 (2019).

    Google Scholar 

  • 24.

    Bingjing, L. et al. Determination of total alkaloids in stems, leaves and skins of Polyalthia plagioneura by acid dye colorimetry. Jiangsu Agric. Sci. 42(1), 263–264 (2014).

    Google Scholar 

  • 25.

    Ling, L., Yunling, M., Zhengliang, Y., Rongpin, Q. & Guanghui, H. Analysis of nutritive compositions of conifer needles from 3 pinaceae trees. J. West China Forestry Sci. 43(2), 117–120 (2014).

    Google Scholar 

  • 26.

    Youqing, L. & Jianguang, Li. Bionomics and occurrence of Anoplophora glabripennis (Motschulsky). Plant Quarant. 13(1), 5–7 (1999).

    Google Scholar 

  • 27.

    Ma Shuangmin, Yu., Hong, L. C. & Mingzhi, Y. Plant gall biology. Chin. Bull. Entomol. 45(2), 330–335 (2008).

    Google Scholar 

  • 28.

    Qi, M. & Wupengmao, X. A preliminary study of biological characteristics of Tetranychid on clove tree. J. Qinghai Univ. (Nat. Sci.) 29(6), 75–79 (2011).

    Google Scholar 

  • 29.

    Martinez, J. I. Anti-insect effects of the gall wall of Baizongia pistaciae [l], a gall-inducing aphid on Pistacia palaestina boiss. Arthropod Plant Interact. 4(1), 29–34 (2010).

    Google Scholar 

  • 30.

    Mattson, W. J. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11(1), 119–161 (1980).

    Google Scholar 

  • 31.

    Nam, Y. & Choi, W. I. An empirical predictive model for the spring emergence of Thecodiplosis japonensis (Diptera: Cecidomyiidae): Model construction and validation on the basis of 25 years of field observation data. J. Econ. Entomol. 107(3), 1136–1141 (2014).

    PubMed  Google Scholar 

  • 32.

    Nisperos-carriedo, M. O., Buslig, B. S. & Shaw, P. E. Simultaneous detection of dehydroascorbic, ascorbic, and some organic acids in fruits and vegetables by HPLC. J. Agric. Food Chem. 40(7), 1127–1130 (1992).

    CAS  Google Scholar 

  • 33.

    Nyman, T. & Julkunen-tiitto, R. Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proc. Natl. Acad. Sci. 97(24), 13184–13187 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • 34.

    Petersen, M. & Sandström, J. Outcome of indirect competition between two aphid species mediated by responses in their common host plant. Funct. Ecol. 15(4), 525–534 (2001).

    Google Scholar 

  • 35.

    Pichersky, E. & Gang, D. R. Genetics and biochemistry of secondary metabolites in plants: An evolutionary perspective. Trends Plant Sci. 5, 439–445 (2000).

    CAS  PubMed  Google Scholar 

  • 36.

    Price, P. W., Waring, G. L. & Fernandes, G. W. Hypotheses on the adaptive nature of galls. Proc. Entomol. Soc. Wash. 88(2), 361–363 (1986).

    Google Scholar 

  • 37.

    Junde, Q. The relationship between insects and plants. Bull. Biol. 10, 16–18 (1985).

    Google Scholar 

  • 38.

    Sandstrm, J. & Pettersson, J. Amino acid composition of phloem sap and the relation to intraspecific variation in pea aphid (Acyrthosiphon pisum) performance. J. Insect Physiol. 40, 947–955 (1994).

    Google Scholar 

  • 39.

    Lakshminarayan, S. (2013). Role of carotenoid cleavage dioxygenases in volatile emissions and insect resistance in Arabidopsis. https://ir.lib.uwo.ca/etd/1846.

  • 40.

    Shorthouse, J. D. & Rohfritsch, O. Biology of Insect-Induced Galls (Oxford University Press, Oxford, 1992).

    Google Scholar 

  • 41.

    Singer, A. C., Crowley, D. E. & Thompson, I. P. Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol. 21(3), 123–130 (2003).

    CAS  PubMed  Google Scholar 

  • 42.

    Skuhravy, V. The development of the needle-shortening gall midge, thecodiplosis brachyntera, on the mountain pine, Pinus mugo Subsp. Mughus (Diptera, Cecidomyiidae). Acta Entomol. Bohemosl. 70(3), 162–167 (1973).

    Google Scholar 

  • 43.

    Son, D., Eom, T., Seo, J. & Lee, S. Potential resistance factors in pine needles to pine gall midge. J. Korean Forestry Soc. 85(2), 244–250 (1996).

    Google Scholar 

  • 44.

    Son, D., Eom, T., Seo, J. & Lee, S. A study on resistant substance to pine needle gall midge among phenolic compounds in pine needles. J. Korean Soc. Forest Sci. 85(3), 372–380 (1996).

    Google Scholar 

  • 45.

    Son, K. Effects of the gregariousness of larvae in galls on the reproductive success of the pine needle gall midge, Thecodiplosis japonensis Uchida Et Inouye (Dipt., Cecidomyiidae). J. Appl. Entomol. 119(1), 267–272 (2009).

    Google Scholar 

  • 46.

    Sone, K. Ecological studies on the pine needle gall midge, Thecodiplosis japonensis Uchida Et Inouye (Diptera: Cecidomyiidae). III Characteristic features of the infestation and its impacts on the growth of pine trees. Bull. Forestry Forest Products Res. Inst. Japan 349, 71–96 (1987).

    Google Scholar 

  • 47.

    Soné, K. Population dynamics of the pine needle gall midge, Thecodiplosis japonensis Uchida Et Inouye (Diptera, Cecidomyiidae). J. Appl. Entomol. 103(4), 386–402 (1987).

    Google Scholar 

  • 48.

    Soné, K. Mortality factors before gall formation by the pine needle gall midge, Thecodiplosis japonensis Uchida Et Inouye (Diptera: Cecidomyiidae). J. Japan. Forestry Soc. 68(1), 32–34 (1986).

    Google Scholar 

  • 49.

    Stern, D. L. Phylogenetic evidence that aphids, rather than plants, determine gall morphology. Proc. R. Society Lond. Series Biol. Sci. 260(1357), 85–89 (1995).

    ADS  Google Scholar 

  • 50.

    Stone, G. N. & Cook, J. M. The structure of cynipid oak galls: Patterns in the evolution of an extended phenotype. Proc. R. Society Lond. Series Biol. Sci. 265(1400), 979–988 (1998).

    Google Scholar 

  • 51.

    Stone, G. N. & Schönrogge, K. The adaptive significance of insect gall morphology. Trends Ecol. Evol. 18(10), 512–522 (2003).

    Google Scholar 

  • 52.

    Stone, G. N., Schönrogge, K., Atkinson, R. J., Bellido, D. & Pujade-villar, J. The population biology of oak gall wasps (Hymenoptera: Cynipidae). Annu. Rev. Entomol. 47(1), 633–668 (2002).

    CAS  PubMed  Google Scholar 

  • 53.

    Truernit, E., Schmid, J., Epple, P., Illig, J. & Sauer, N. The sink-specific and stress-regulated arabidopsis stp4 gene: Enhanced expression of a gene encoding a monosaccharide transporter by wounding, elicitors, and pathogen challenge. Plant Cell 8(12), 2169–2182 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Chenzhu, W. & Junde, Q. Protease inhibitors in plants contributing to resistance to insects: An overview. Acta Entomol. Sin. 40(2), 212–218 (1997).

    Google Scholar 

  • 55.

    Haoyun, W., Guijie, D., Xie Weibin, Wu. & Feng, Z. G. Growth and photosynthetic pigment content of superiorseedlings of Pinus massoniana. J. Southw. Forestry Univ. 37(5), 42–47 (2017).

    Google Scholar 

  • 56.

    Mo, W., Yan, J., Zhaojun, M. & Shanchun, Y. Adaptability of larval growth and development in Hyphantria cunea to different host plant secondary metabolites. J. Northe. Forestry Univ. 48(3), 100–104 (2020).

    Google Scholar 

  • 57.

    Shaolin, W., Minghui, X., Wang Hongqi, Su. & Lianheng, F. K. Bionomics of Acantholyda posticalis and its biological control techniques. Forest Pest Disease 23(2), 23–26 (2004).

    Google Scholar 

  • 58.

    Wei, W. et al. Effects on secondary metabolite contents in eucalyptus strains damaged by Leptocybe invasa. J. Trop. Subtrop. Bot. 21(6), 521–528 (2013).

    Google Scholar 

  • 59.

    Weis, A. E., Walton, R. & Crego, C. L. Reactive plant tissue sites and the population biology of gall makers. Annu. Rev. Entomol. 33(1), 467–486 (1988).

    Google Scholar 

  • 60.

    Wei, S. et al. Enhanced beta-ionone emission in Arabidopsis over-expressing AtCCD1 reduces feeding damage in vivo by the crucifer flea beetle. Environ Entomol. 40, 1622–1630 (2011).

    CAS  PubMed  Google Scholar 

  • 61.

    Westphal, E., Bronner, R. & Ret, M. L. Changes in leaves of susceptible and resistant solanum dulcamara infested by the gall mite Eriophyes cladophthirus (Acarina, Eriophyoidea). Can. J. Bot. 59(5), 875–882 (1981).

    Google Scholar 

  • 62.

    Williams, L. E., Lemoine, R. & Sauer, N. Sugar transporters in higher plants—A diversity of roles and complex regulation. Trends Plant Sci. 5(7), 283–290 (2000).

    CAS  PubMed  Google Scholar 

  • 63.

    Wool, D. & Bar-el, N. Population ecology of the galling aphid forda formicaria von heyden in Israel: Abundance, demography, and gall structure. Israel J. Ecol. Evolut. 41(2), 175–192 (2013).

    Google Scholar 

  • 64.

    Wool, D. & Ben-zvi, O. Population ecology and clone dynamics of the galling aphid Geoica wertheimae (Sternorrhyncha: Pemphigidae: Fordinae). Eur. J. Entomol. 95(4), 509–518 (1998).

    Google Scholar 

  • 65.

    Wool, D. & Burstein, M. A galling aphid with extra life-cycle complexity: Population ecology and evolutionary considerations. Popul. Ecol. 33(2), 307–322 (1991).

    Google Scholar 

  • 66.

    Wool, D. & Manheim, O. Population ecology of the gall-forming aphid, Aploneura lentisci (pass) in Israel. Popul. Ecol. 28(1), 151–162 (1986).

    Google Scholar 

  • 67.

    Zhijie, Wu., Yinghan, L. & Hong, C. Research progress of resistant active components in Momordica Charantia leaves. Biol. Bull. 1, 16–19 (2009).

    Google Scholar 

  • 68.

    Hongqiang, Y. & Huajun, G. Journal of plant physiology and molecular biology. Physiol. Funct. Arginine Metab. Plants 33(1), 1–8 (2007).

    Google Scholar 

  • 69.

    Hongqiang, Y. & Yuling, J. Relationship between polyamines and development of fruit tree. J. Shandong Agric. Univ. 27(4), 134–140 (1996).

    Google Scholar 

  • 70.

    Mingzhi, Y., Hanbo, Z., Chengchen, Li. & Shuangmin, Ma. Physiological responses of gall tissues on Ivytree leaves induced by thrip. Acta Bot. Yunnanica 32(4), 339–346 (2010).

    Google Scholar 

  • 71.

    Zhibin, Y., Hai, L. & Lan, G. Determination of total tritepenoidic in leaves and stems of Polyalthia rumphii by Ultraviolet spectrophotometry. Hubei Agric. Sci. 52(5), 1158–1160 (2013).

    Google Scholar 

  • 72.

    Cao, Y., Dai, H., Cao, W. & Han, Z. Determination of total phenols in Zizyphus jujuba mill by folin-ciocaileu colorimetry. Anhui Agric. Sci. 36(4), 1299–1302 (2008).

    CAS  Google Scholar 

  • 73.

    Yazaki, K. Abc transporters involved in the transport of plant secondary metabolites. Febs Letters. 580(4), 1183–1191 (2006).

    CAS  PubMed  Google Scholar 

  • 74.

    Chunling, Z., Zhiwen, Li. & Aiying, G. Studies on biological characteristics of Hyphantria cunea. J. Hebei Forestry Coll. 8(3), 239–243 (1993).

    Google Scholar 

  • 75.

    Huafeng, Z., Shunli, C., Jianhua, Z. & Silu, Z. Effect of Monochamus alternatus on the composition of chemical materials in needles of Pinus massonina. J. Fujiian Coll. For. 24(1), 28–31 (2004).

    Google Scholar 

  • 76.

    Ying, Z., Liqing, D., Wenchang, D., Haiping, Li. & Shujun, F. Study on the relationship between Aceria palida Keifer gall and its population. J. Inner Mongol. Agric. Univ. 33(5), 84–86 (2013).

    Google Scholar 

  • 77.

    Yifan, Z., Shixiong, W. Sustainable research and exploitation on insect resources. In: China Biodiversity Conservation Foundation. The Fifth International Conference on Biodiversity Conservation and Utilization. China Biodiversity Conservation Foundation, pp 238–240. (2005).

  • 78.

    Xiaohong, Z., Xianshi, L. & Aihua, C. A study on Nai Plum’s flower bud differentiation and its major content of metabolic production. J. Hunan Agric. Univ. 25(1), 31–35 (1990).

    Google Scholar 

  • 79.

    Lin, Z. Application and research in the bioactivity of Botanical alkaloids against insects. J. Henan Forestry Sci. Technol. 27(1), 32–36 (2007).

    Google Scholar 

  • 80.

    Yuyong, Z., Li, C. & Wang, J. Impact of free amino acid composition of plant phloem sap and pea aphid itself when it takes food. Xinjiang Agric. Sci. 51(7), 1284–1291 (2014).

    Google Scholar 


  • Source: Ecology - nature.com

    Schistocephalus parasite infection alters sticklebacks’ movement ability and thereby shapes social interactions

    Evidence of scavenging behaviour in crested porcupine