in

Respiratory microbiota of humpback whales may be reduced in diversity and richness the longer they fast

  • 1.

    Bik, E. M. et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat. Commun. 7, 10516 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Apprill, A. et al. Extensive core microbiome in drone-captured whale blow supports a framework for health monitoring. MSystems 2, e00119-e117 (2017).

    Google Scholar 

  • 3.

    Pirotta, V. et al. An economical custom-built drone for assessing whale health. Front. Mar. Sci. 4, 425 (2017).

    Google Scholar 

  • 4.

    Raverty, S. A. et al. Respiratory microbiome of endangered southern resident killer whales and microbiota of surrounding sea surface microlayer in the Eastern North Pacific. Sci. Rep. 7, 394 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Lima, N., Rogers, T., Acevedo-Whitehouse, K. & Brown, M. V. Temporal stability and species specificity in bacteria associated with the bottlenose dolphins respiratory system. Environ. Microbiol. Rep. 4, 89–96 (2012).

    PubMed  Google Scholar 

  • 6.

    Johnson, W. R. et al. Novel diversity of bacterial communities associated with bottlenose dolphin upper respiratory tracts. Environ. Microbiol. Rep. 1, 555–562 (2009).

    CAS  PubMed  Google Scholar 

  • 7.

    Acevedo-Whitehouse, K., Rocha-Gosselin, A. & Gendron, D. A novel non-invasive tool for disease surveillance of free-ranging whales and its relevance to conservation programs. Anim. Conserv. 13, 217–225 (2010).

    Google Scholar 

  • 8.

    Bassis, C. M., Tang, A. L., Young, V. B. & Pynnonen, M. A. The nasal cavity microbiota of healthy adults. Microbiome 2, 27 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Dickson, R. P. et al. Bacterial topography of the healthy human lower respiratory tract. MBio 8, e02287-e2216 (2017).

    Google Scholar 

  • 10.

    Bond, S. L., Timsit, E., Workentine, M., Alexander, T. & Léguillette, R. Upper and lower respiratory tract microbiota in horses: bacterial communities associated with health and mild asthma (inflammatory airway disease) and effects of dexamethasone. BMC Microbiol. 17, 184 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 11.

    Ericsson, A. C., Personett, A. R., Grobman, M. E., Rindt, H. & Reinero, C. R. Composition and predicted metabolic capacity of upper and lower airway microbiota of healthy dogs in relation to the fecal microbiota. PLoS ONE 11, e0154646 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 12.

    Vientos-Plotts, A. I. et al. Dynamic changes of the respiratory microbiota and its relationship to fecal and blood microbiota in healthy young cats. PLoS ONE 12, e0173818 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 13.

    Dickson, R. P. et al. The lung microbiota of healthy mice are highly variable, cluster by environment, and reflect variation in baseline lung innate immunity. Am. J. Respir. Crit. Care Med. 198, 497–508 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Segal, L. N. et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a th17 phenotype. Nat. Microbiol. 1, 16031 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Shenoy, M. K. et al. Immune response and mortality risk relate to distinct lung microbiomes in patients with HIV and pneumonia. Am. J. Respir. Crit. Care Med. 195, 104–114 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Biswas, K., Hoggard, M., Jain, R., Taylor, M. W. & Douglas, R. G. The nasal microbiota in health and disease: variation within and between subjects. Front. Microbiol. 6, 134 (2015).

    PubMed Central  Google Scholar 

  • 17.

    Dickson, R. P., Erb-Downward, J. R., Martinez, F. J. & Huffnagle, G. B. The microbiome and the respiratory tract. Annu. Rev. Physiol. 78, 481–504 (2016).

    CAS  PubMed  Google Scholar 

  • 18.

    Garcia-Nuñez, M. et al. Severity-related changes of bronchial microbiome in chronic obstructive pulmonary disease. J. Clin. Microbiol. 52, 4217–4223 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Dickson, R. P. et al. Cell-associated bacteria in the human lung microbiome. Microbiome 2, 28 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 20.

    Huang, Y. J. et al. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J. Allergy Clin. Immunol. 127, 372–381 (2011).

    PubMed  Google Scholar 

  • 21.

    Dickson, R. P., Martinez, F. J. & Huffnagle, G. B. The role of the microbiome in exacerbations of chronic lung diseases. Lancet 384, 691–702 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Cardona, C. et al. Environmental sources of bacteria differentially influence host-associated microbial dynamics. MSystems 3, e00052-00018 (2018).

    Google Scholar 

  • 23.

    Hunt, K. E. et al. Overcoming the challenges of studying conservation physiology in large whales: a review of available methods. Conserv. Physiol. 1, 1–24 (2013).

    Google Scholar 

  • 24.

    International Whaling Commission. Annexe. Report of the sub-committee on other great whales. J. Cetacean Res. Manag. 1, 117–155 (1999).

    Google Scholar 

  • 25.

    Rasmussen, K. et al. Southern hemisphere humpback whales wintering off Central America: insights from water temperature into the longest mammalian migration. Biol. Lett. 3, 302–305 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 26.

    Stevick, P. T. et al. A quarter of a world away: female humpback whale moves 10 000 km between breeding areas. Biol. Lett. 7, 299–302 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 27.

    Riekkola, L. et al. Application of a multi-disciplinary approach to reveal population structure and Southern Ocean feeding grounds of humpback whales. Ecol. Indic. 89, 455–465 (2018).

    Google Scholar 

  • 28.

    Zerbini, A. N. et al. Satellite-monitored movements of humpback whales Megaptera novaeangliae in the southwest Atlantic Ocean. Mar. Ecol. Prog. Ser. 313, 295–304 (2006).

    ADS  Google Scholar 

  • 29.

    Chittleborough, R. G. Dynamics of two populations of the humpback whale, Megaptera novaeangliae (borowski). Mar. Freshw. Res. 16, 33–128 (1965).

    Google Scholar 

  • 30.

    Chittleborough, R. G. The breeding cycle of the female humpback whale, Megaptera nodosa (bonnaterre). Mar. Freshw. Res. 9, 1–18 (1958).

    Google Scholar 

  • 31.

    Clapham, P. J. The humpback whale: seasonal feeding and breeding in a baleen whale. In Cetacean societies: field studies of dolphins and whales (eds Mann, J. et al.) 173–196 (University of Chicago Press, Chicago, 2000).

    Google Scholar 

  • 32.

    Franklin, T. The social and ecological significance of Hervey bay Queensland for Eastern Australian humpback whales (Megaptera novaeangliae). Ph.D. thesis, Southern Cross University, Lismore, NSW (2012).

  • 33.

    Franklin, T. et al. Seasonal changes in pod characteristics of Eastern Australian humpback whales (Megaptera novaeangliae). Mar. Mammal Sci. 27, E134–E152 (2011).

    Google Scholar 

  • 34.

    Dawbin, W. H. The seasonal migratory cycle of humpback whales. In Whales, dolphins and porpoises (ed. Norris, K. S.) (University of California Press, Berkeley, 1996).

    Google Scholar 

  • 35.

    Seymour, J. R. et al. Contrasting microbial assemblages in adjacent water masses associated with the East Australian current. Environ. Microbiol. 4, 548–555 (2012).

    CAS  Google Scholar 

  • 36.

    Chao, A. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).

    Google Scholar 

  • 37.

    Chao, A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783–791 (1987).

    MathSciNet  CAS  PubMed  MATH  Google Scholar 

  • 38.

    Chao, A. & Yang, M. C. Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika 80, 193–201 (1993).

    MathSciNet  MATH  Google Scholar 

  • 39.

    Chao, A., Hwang, W. H., Chen, Y. C. & Kuo, C. Y. Estimating the number of shared species in two communities. Stat. Sin. 10, 227–246 (2000).

    MathSciNet  MATH  Google Scholar 

  • 40.

    Dunn, O. J. Multiple comparisons using rank sums. Technometrics 6, 241–252 (1964).

    Google Scholar 

  • 41.

    Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).

    MathSciNet  MATH  Google Scholar 

  • 42.

    Shade, A. & Handelsman, J. Beyond the Venn diagram: the hunt for a core microbiome. Environ. Microbiol. 14, 4–12 (2012).

    CAS  PubMed  Google Scholar 

  • 43.

    Magurran, A. E. & Henderson, P. A. Explaining the excess of rare species in natural species abundance distributions. Nature 422, 714 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 44.

    Hernandez-Agreda, A., Gates, R. D. & Ainsworth, T. D. Defining the core microbiome in corals’ microbial soup. Trends Microbiol. 25, 125–140 (2017).

    CAS  PubMed  Google Scholar 

  • 45.

    Astudillo-García, C. et al. Evaluating the core microbiota in complex communities: a systematic investigation. Environ. Microbiol. 19, 1450–1462 (2017).

    PubMed  Google Scholar 

  • 46.

    Einarsson, G. G. et al. Community dynamics and the lower airway microbiota in stable chronic obstructive pulmonary disease, smokers and healthy non-smokers. Thorax 79, 795–803 (2016).

    Google Scholar 

  • 47.

    Venn-Watson, S., Daniels, R. & Smith, C. Thirty year retrospective evaluation of pneumonia in a bottlenose dolphin Tursiops truncatus population. Dis. Aquat. Organ. 99, 237–242 (2012).

    PubMed  Google Scholar 

  • 48.

    Venn-Watson, S., Smith, C. R. & Jensen, E. D. Primary bacterial pathogens in bottlenose dolphins Tursiops truncatus: needles in haystacks of commensal and environmental microbes. Dis. Aquat. Organ. 79, 87–93 (2008).

    PubMed  Google Scholar 

  • 49.

    Waltzek, T., Cortés-Hinojosa, G., Wellehan, J. Jr. & Gray, G. C. Marine mammal zoonoses: a review of disease manifestations. Zoonoses Public Health 59, 521–535 (2012).

    CAS  PubMed  Google Scholar 

  • 50.

    Cusick, P. & Bullock, B. Ulcerative dermatitis and pneumonia associated with Aeromonas hydrophila infection in the bottle-nosed dolphin. J. Am. Vet. Med. Assoc. 163, 578–579 (1973).

    CAS  PubMed  Google Scholar 

  • 51.

    Owen, K. et al. Effect of prey type on the fine-scale feeding behaviour of migrating East Australian humpback whales. Mar. Ecol. Prog. Ser. 541, 231–244 (2015).

    ADS  Google Scholar 

  • 52.

    Lockyer, C. Body weights of some species of large whales. ICES J. Mar. Sci. 36, 259–273 (1976).

    Google Scholar 

  • 53.

    Bengtson Nash, S. M., Waugh, C. A. & Schlabach, M. Metabolic concentration of lipid soluble organochlorine burdens in the blubber of Southern Hemisphere humpback whales through migration and fasting. Environ. Sci. Technol. 47, 9004–9413 (2013).

    Google Scholar 

  • 54.

    Johnson, K. L. Capital and income breeding as alternative tactics of resource use in reproduction. Oikos 78, 57–66 (1997).

    Google Scholar 

  • 55.

    Noad, M. J., Dunlop, R. A., Paton, D. & Cato, D. H. Absolute and relative abundance estimates of Australian east coast humpback whales (Megaptera novaeangliae). J. Cetacean Res. Manag. 243, 252 (2011).

    Google Scholar 

  • 56.

    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142 (2019).

    ADS  Google Scholar 

  • 57.

    Katona, S. K. & Beard, J. A. Population size, migrations and feeding aggregations of the humpback whale (Megaptera novaeangliae) in the western North Atlantic Ocean. Rep. Int. Whal. Comm. Spec. Issue 12, 295–306 (1990).

    Google Scholar 

  • 58.

    Christiansen, F. et al. Maternal body size and condition determine calf growth rates in southern right whales. Mar. Ecol. Prog. Ser. 592, 267–281 (2018).

    ADS  Google Scholar 

  • 59.

    Durban, J. W., Fearnbach, H., Barrett-Lennard, L., Perryman, W. & Leroi, D. Photogrammetry of killer whales using a small hexacopter launched at sea. J. Unmanned Veh. Syst. 3, 131–135 (2015).

    Google Scholar 

  • 60.

    Christiansen, F., Dujon, A. M., Sprogis, K. R., Arnould, J. P. & Bejder, L. Noninvasive unmanned aerial vehicle provides estimates of the energetic cost of reproduction in humpback whales. Ecosphere 7, e01468 (2016).

    Google Scholar 

  • 61.

    Mingramm, F., Dunlop, R., Blyde, D., Whitworth, D. & Keeley, T. Evaluation of respiratory vapour and blubber samples for use in endocrine assessments of bottlenose dolphins (Tursiops spp.). Gen. Comp. Endocrinol. 274, 37–49 (2019).

    CAS  PubMed  Google Scholar 

  • 62.

    Mingramm, F. M., Keeley, T., Whitworth, D. J. & Dunlop, R. A. Relationships between blubber and respiratory vapour steroid hormone concentrations in humpback whales (Megaptera novaeangliae). Aquat. Mamm. 45, 465–477 (2019).

    Google Scholar 

  • 63.

    Castrillon, J., Huston, W. & Bengtson Nash, S. The blubber adipocyte index: a nondestructive biomarker of adiposity in humpback whales (Megaptera novaeangliae). Ecol. Evol. 7, 5131–5139 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 64.

    Hogg, C. J. et al. Determination of steroid hormones in whale blow: it is possible. Mar. Mammal Sci. 25, 605–618 (2009).

    CAS  Google Scholar 

  • 65.

    Lane, D. J. et al. Rapid determination of 16s ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. 82, 6955–6959 (1985).

    ADS  CAS  PubMed  Google Scholar 

  • 66.

    Lane, D. J. 16s/23s rRNA sequencing. In Nucleic acid techniques in bacterial systematics (eds Stackebrandt, E. & Goodfellow, M.) (Wiley, New York, 1991).

    Google Scholar 

  • 67.

    Bioinformatics.babraham.ac.uk (2019) Babraham bioinformatics—fastqc a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc. 20 Jan 2019.

  • 68.

    Edgar, R. C. Uparse: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 69.

    Edgar, R. C. Unoise2: improved error-correction for illumina 16s and its amplicon sequencing. BioRxiv 081257 (2016).

  • 70.

    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 71.

    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. Uchime improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 72.

    Quast, C. et al. The silva ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 73.

    Cole, J. R. et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 74.

    Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., O’hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H. & Wagner, H. (2010) Vegan: community ecology package. R package version 1.17-4. https://cran.r-project.org. 30 Jan 2019.

  • 75.

    Lozupone, C. & Knight, R. Unifrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 76.

    Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). Wiley statsref: statistics reference online, 1–15 (2014).

  • 77.

    Warton, D. I., Wright, S. T. & Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 3, 89–101 (2012).

    Google Scholar 

  • 78.

    Wang, Y. I., Naumann, U., Wright, S. T. & Warton, D. I. Mvabund—an r package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).

    Google Scholar 

  • 79.

    Warton, D. I., Thibaut, L. & Wang, Y. A. The pit-trap—a “model-free” bootstrap procedure for inference about regression models with discrete, multivariate responses. PLoS ONE 12, e0181790 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 80.

    Lokmer, A. et al. Spatial and temporal dynamics of Pacific oyster hemolymph microbiota across multiple scales. Front. Microbiol. 7, 1367 (2016).

    PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Preparation and water desalination properties of bridged polysilsesquioxane membranes with divinylbenzene and divinylpyridine units

    Genetic tropicalisation following a marine heatwave