Sath, I. P. C. C. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 151 (IPCC Press, Geneva, 2014).
Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).
Grant, P. R. et al. Evolution caused by extreme events. Philos. Trans. R. Soc. B. https://doi.org/10.1098/rstb.2016.0146 (2017).
Jangjoo, M., Matter, S. F., Roland, J. & Keyghobadi, N. Connectivity rescues genetic diversity after a demographic bottleneck in a butterfly population network. Proc. Natl. Acad. Sci. USA 113, 10914–10919. https://doi.org/10.1073/pnas.1600865113 (2016).
Gaines, S. D. & Denny, M. W. The largest, smallest, highest, lowest, longest, and shortest: Extremes in ecology. Ecology 74, 1677–1692 (1993).
Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172. https://doi.org/10.1126/science.aad8745 (2016).
Vincenzi, S., Mangel, M., Jesensek, D., Garza, J. C. & Crivelli, A. J. Genetic and life-history consequences of extreme climate events. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2016.2118 (2017).
Poff, N. L. et al. Extreme streams: Species persistence and genomic change in montane insect populations across a flooding gradient. Ecol. Lett. 21, 525–535. https://doi.org/10.1111/ele.12918 (2018).
Campbell-Staton, S. C. et al. Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science 357, 495–497. https://doi.org/10.1126/science.aam5512 (2017).
Wernberg, T. et al. Genetic diversity and kelp forest vulnerability to climatic stress. Sci. Rep. Uk 8, 1851. https://doi.org/10.1038/s41598-018-20009-9 (2018).
Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238. https://doi.org/10.1016/j.pocean.2015.12.014 (2016).
Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. https://doi.org/10.1038/s41467-018-03732-9 (2018).
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306. https://doi.org/10.1038/s41558-019-0412-1 (2019).
Straub, S. C. et al. Resistance, extinction, and everything in between—the diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00763 (2019).
Arafeh-Dalmau, N. et al. Extreme marine heatwaves alter kelp forest community near its equatorward distribution limit. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00499 (2019).
Thomsen, M. S. et al. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00084 (2019).
Rogers-Bennett, L. & Catton, C. A. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. Uk 9, 15050. https://doi.org/10.1038/s41598-019-51114-y (2019).
Bell, T. M., Strand, A. E. & Sotka, E. E. The adaptive cline at LDH (Lactate Dehydrogenase) in Killifish Fundulus heteroclitus remains stationary after 40 years of warming Estuaries. J. Hered. 105, 566–571. https://doi.org/10.1093/jhered/esu016 (2014).
Hilbish, T. J. et al. Change and stasis in marine hybrid zones in response to climate warming. J. Biogeogr. 39, 676–687. https://doi.org/10.1111/j.1365-2699.2011.02633.x (2012).
Gurgel, C. F. D., Camacho, O., Minne, A. J. P., Wernberg, T. & Coleman, M. A. Marine heatwave drives cryptic loss of genetic diversity in underwater forests. Curr. Biol. 30, 1199–1206. https://doi.org/10.1016/j.cub.2020.01.051 (2020).
Reusch, T. B. H., Ehlers, A., Hämmerli, A. & Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl. Acad. Sci. USA 102, 2826–2831. https://doi.org/10.1073/pnas.0500008102 (2005).
Hobday, A. J. et al. Categorizing and naming marine heatwaves. Oceanography 31, 162–173. https://doi.org/10.5670/oceanog.2018.205 (2018).
Pearce, A. et al. The “Marine Heat Wave” off Western Australia During the Summer of 2010/11. (Government of Western Australia, Department of Fisheries., Western Australia, 2011).
Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82. https://doi.org/10.1038/Nclimate1627 (2013).
Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2012.2829 (2013).
Moore, J. A. Y. et al. Unprecedented mass bleaching and loss of coral across 12° of latitude in Western Australia in 2010–11. PLoS One 7, e51807. https://doi.org/10.1371/journal.pone.0051807 (2012).
Caputi, N. et al. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot. Ecol. Evol. 6, 3583–3593. https://doi.org/10.1002/ece3.2137 (2016).
Bennett, S. et al. The “Great Southern Reef”: Social, ecological and economic value of Australia’s neglected kelp forests. Mar. Freshw. Res. 67, 47–56. https://doi.org/10.1071/Mf15232 (2016).
Coleman, M. A. & Wernberg, T. Forgotten underwater forests: The key role of fucoids on Australian temperate reefs. Ecol. Evol. 7, 8406–8418. https://doi.org/10.1002/ece3.3279 (2017).
Wernberg, T. et al. Biology and ecology of the globally significant kelp Ecklonia radiata. Oceanogr. Mar. Biol. Annu. Rev. 20, 20 (2019).
Feng, M., McPhaden, M. J., Xie, S.-P. & Hafner, J. L. Niña forces unprecedented Leeuwin current warming in 2011. Sci. Rep. Uk 3, 1277. https://doi.org/10.1038/srep01277 (2013).
Coleman, M. A., Vytopil, E., Goodsell, P. J., Gillanders, B. M. & Connell, S. D. Diversity and depth-related patterns of mobile invertebrates associated with kelp forests. Mar. Freshw. Res. 58, 589–595. https://doi.org/10.1071/Mf06216 (2007).
Coleman, M. A. & Kennelly, S. J. Microscopic assemblages in kelp forests and urchin barrens. Aquat. Bot. 154, 66–71. https://doi.org/10.1016/j.aquabot.2019.01.005 (2019).
Coleman, M. A. & Wernberg, T. Genetic and morphological diversity in sympatric kelps with contrasting reproductive strategies. Aquat. Biol. 27, 65–73. https://doi.org/10.3354/ab00698 (2018).
Coleman, M. A. et al. Variation in the strength of continental boundary currents determines continent-wide connectivity in kelp. J. Ecol. 99, 1026–1032. https://doi.org/10.1111/j.1365-2745.2011.01822.x (2011).
Little, A. G., Fisher, D. N., Schoener, T. W. & Pruitt, J. N. Population differences in aggression are shaped by tropical cyclone-induced selection. Nat. Ecol. Evol. 3, 1294–1297. https://doi.org/10.1038/s41559-019-0951-x (2019).
Schiebelhut, L. M., Puritz, J. B. & Dawson, M. N. Decimation by sea star wasting disease and rapid genetic change in a keystone species, Pisaster ochraceus. Proc. Natl. Acad. Sci. 115, 7069. https://doi.org/10.1073/pnas.1800285115 (2018).
Coleman, M. A., Gillanders, B. M. & Connell, S. D. Dispersal and gene flow in the habitat-forming kelp, Ecklonia radiata: Relative degrees of isolation across an east–west coastline. Mar. Freshw. Res. 60, 802–809. https://doi.org/10.1071/Mf08268 (2009).
Coleman, M. A. et al. Connectivity within and among a network of temperate marine reserves. PLoS One https://doi.org/10.1371/journal.pone.0020168 (2011).
Itou, T. et al. Development of 12 polymorphic microsatellite DNA markers for the kelp Ecklonia cava (Phaeophyceae, Laminariales). Conserv. Genet. Resour. 4, 459–461. https://doi.org/10.1007/s12686-011-9574-5 (2012).
Akita, S. et al. Development of 11 Ecklonia radicosa (Phaeophyceae, Laminariales) SSRs markers using next-generation sequencing and intra-genus amplification analysis. J. Appl. Phycol. 30, 2111–2115. https://doi.org/10.1007/s10811-018-1406-5 (2018).
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x (2004).
Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).
Agapow, P.-M. & Burt, A. Indices of multilocus linkage disequilibrium. Mol. Ecol. Notes 1, 101–102. https://doi.org/10.1046/j.1471-8278.2000.00014.x (2001).
Guo, S. W. & Thompson, E. A. Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48, 361–372 (1992).
Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).
Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F. GENETIX 402, logiciel sous Windows TM pour la génétique des populations (2000).
Jueterbock, A., Coyer, J. A., Olsen, J. L. & Hoarau, G. Decadal stability in genetic variation and structure in the intertidal seaweed Fucus serratus (Heterokontophyta: Fucaceae). BMC Evol. Biol. 18, 94–94. https://doi.org/10.1186/s12862-018-1213-2 (2018).
Goudet, J. FSTAT (Version 1.2): A computer program to calculate F-statistics. J. Hered. 86, 485–486. https://doi.org/10.1093/oxfordjournals.jhered.a111627 (1995).
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).
Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).
Francis, R. M. Pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 17, 27–32. https://doi.org/10.1111/1755-0998.12509 (2017).
Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405. https://doi.org/10.1093/bioinformatics/btn129 (2008).
Luikart, G. & Cornuet, J.-M. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv. Biol. 12, 228–237. https://doi.org/10.1111/j.1523-1739.1998.96388.x (1998).
Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).
Bohonak, A. J. IBD (isolation by distance): A program for analyses of isolation by distance. J. Hered. 93, 153–154. https://doi.org/10.1093/jhered/93.2.153 (2002).
Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl. Acad. Sci. 113, 13791–13796. https://doi.org/10.1073/pnas.1610725113 (2016).
Vergés, A. et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B-Biol. Sci. https://doi.org/10.1098/rspb.2014.0846 (2014).
Vergés, A. et al. Tropicalisation of temperate reefs: Implications for ecosystem functions and management actions. Funct. Ecol. 33, 1000–1013. https://doi.org/10.1111/1365-2435.13310 (2019).
Wielstra, B. Historical hybrid zone movement: More pervasive than appreciated. J. Biogeogr. 46, 1300–1305. https://doi.org/10.1111/jbi.13600 (2019).
Taylor, S. A. et al. Climate-mediated movement of an avian hybrid zone. Curr. Biol. 24, 671–676. https://doi.org/10.1016/j.cub.2014.01.069 (2014).
Taylor, S. A., Larson, E. L. & Harrison, R. G. Hybrid zones: Windows on climate change. Trends Ecol. Evol. 30, 398–406. https://doi.org/10.1016/j.tree.2015.04.010 (2015).
Wernberg, T. & Connell, S. D. Physical disturbance and subtidal habitat structure on open rocky coasts: Effects of wave exposure, extent and intensity. J. Sea Res. 59, 237–248. https://doi.org/10.1016/j.seares.2008.02.005 (2008).
Wernberg, T. et al. Decreasing resilience of kelp beds along a latitudinal temperature gradient: Potential implications for a warmer future. Ecol. Lett. 13, 685–694. https://doi.org/10.1111/j.1461-0248.2010.01466.x (2010).
Bennett, S., Wernberg, T., Joy, B. A., De Bettignies, T. & Campbell, A. H. Central and rear-edge populations can be equally vulnerable to warming. Nat. Commun. https://doi.org/10.1038/ncomms10280 (2015).
Wernberg, T., de Bettignies, T., Bijo, A. J. & Finnegan, P. Physiological responses of habitat-forming seaweeds to increasing temperatures. Limnol. Oceanogr. 61, 2180–2190 (2016).
Coleman, M. A., Feng, M., Roughan, M., Cetina-Heredia, P. & Connell, S. D. Temperate shelf water dispersal by Australian boundary currents: Implications for population connectivity. Limnol. Oceanogr. Fluids Environ. 3, 295–309. https://doi.org/10.1215/21573689-2409306 (2013).
Mohring, M. B., Wernberg, T., Kendrick, G. A. & Rule, M. J. Reproductive synchrony in a habitat-forming kelp and its relationship with environmental conditions. Mar. Biol. 160, 119–126. https://doi.org/10.1007/s00227-012-2068-5 (2013).
Barshis, D. J. et al. Coastal upwelling is linked to temporal genetic variability in the acorn barnacle Balanus glandula. Mar. Ecol. Prog. Ser. 439, 139–150 (2011).
Planes, S. & Lenfant, P. Temporal change in the genetic structure between and within cohorts of a marine fish, Diplodus sargus, induced by a large variance in individual reproductive success. Mol. Ecol. 11, 1515–1524. https://doi.org/10.1046/j.1365-294X.2002.01521.x (2002).
Toonen, R. J. & Grosberg, R. K. Phylogeography and Population Genetics in Crustacea (eds S. Koenemann, C. Held, & C. Schubart) 75–107 (CRC Press, Boca Raton, 2011).
Becheler, R. et al. After a catastrophe, a little bit of sex is better than nothing: Genetic consequences of a major earthquake on asexual and sexual populations. Evol. Appl. https://doi.org/10.1111/eva.12967 (2020).
Hoffmann, A. J. & Santelices, B. Banks of algal microscopic forms: Hypotheses on their functioning and comparisons with seed banks. Mar. Ecol. Prog. Ser. 79, 185–194 (1991).
Carney, L. T., Bohonak, A. J., Edwards, M. S. & Alberto, F. Genetic and experimental evidence for a mixed-age, mixed-origin bank of kelp microscopic stages in southern California. Ecology 94, 1955–1965. https://doi.org/10.1890/13-0250.1 (2013).
Hoban, S. et al. Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions. Am. Nat. 188, 379–397. https://doi.org/10.1086/688018 (2016).
Pardo-Diaz, C., Salazar, C. & Jiggins, C. D. Towards the identification of the loci of adaptive evolution. Methods Ecol. Evol. 6, 445–464. https://doi.org/10.1111/2041-210x.12324 (2015).
Staehr, P. A. & Wernberg, T. Physiological responses of Ecklonia Radiata (Laminariales) to a latitudinal gradient in ocean temperature. J. Phycol. 45, 91–99. https://doi.org/10.1111/j.1529-8817.2008.00635.x (2009).
Wernberg, T. in Ecosystem Collapse and Climate Change. (eds Canadell JG & Jackson RB) (Springer-Nature, 2020).
Nicastro, K. R. et al. Shift happens: Trailing edge contraction associated with recent warming trends threatens a distinct genetic lineage in the marine macroalga Fucus vesiculosus. BMC Biol. 11, 6. https://doi.org/10.1186/1741-7007-11-6 (2013).
Coleman, M. A. & Goold, H. Harnessing synthetic biology for kelp forest conservation. J. Phycol. 55, 745–751. https://doi.org/10.1111/jpy.12888 (2019).
Wood, G. et al. Restoring subtidal marine macrophytes in the Anthropocene: Trajectories and future-proofing. Mar. Freshw. Res. 70, 936–951. https://doi.org/10.1071/MF18226 (2019).
Martínez, B. et al. Predictions of responses to ocean warming for habitat-forming seaweeds. Divers. Distrib. 24, 1350–1366 (2018).
Coleman, M. et al. Restore or redefine: Future trajectories for restoration. Front. Mar. Sci. 7, 20 (2020).
Source: Ecology - nature.com