in

Rapid microbial diversification of dissolved organic matter in oceanic surface waters leads to carbon sequestration

  • 1.

    Hansell, D. A., Carlson, C. A., Repeta, D. J. & Schlitzer, R. Dissolved organic matter in the ocean: a controversy stimulates new insights. Oceanography 22, 202–211 (2009).

    Google Scholar 

  • 2.

    Hansell, D. A. & Carlson, C. A. Biogeochemistry of Marine Dissolved Organic Matter (Academic Press, Cambridge, 2014).

    Google Scholar 

  • 3.

    Pomeroy, L. R., Williams, P. J. L., Azam, F. & Hobbie, J. E. The microbial loop. Oceanography 20, 28–33 (2007).

    Google Scholar 

  • 4.

    Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593 (2010).

    CAS  PubMed  Google Scholar 

  • 5.

    Arrieta, J. M. et al. Dilution limits dissolved organic carbon utilization in the deep ocean. Science 348, 331–333 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 6.

    Dittmar, T. Biogeochemistry of Marine Dissolved Organic Matter 369–388 (Elsevier, Amsterdam, 2015).

    Google Scholar 

  • 7.

    Noriega-Ortega, B. E. et al. Does the chemodiversity of bacterial exometabolomes sustain the chemodiversity of marine dissolved organic matter?. Front. Microbiol. 10, 215 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 8.

    Zark, M. & Dittmar, T. Universal molecular structures in natural dissolved organic matter. Nat. Commun. 9, 1–8 (2018).

    CAS  Google Scholar 

  • 9.

    Lechtenfeld, O. J., Hertkorn, N., Shen, Y., Witt, M. & Benner, R. Marine sequestration of carbon in bacterial metabolites. Nat. Commun. 6, 1–8 (2015).

    Google Scholar 

  • 10.

    Roshan, S. & DeVries, T. Efficient dissolved organic carbon production and export in the oligotrophic ocean. Nat. Commun. 8, 2036 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Longhurst, A., Sathyendranath, S., Platt, T. & Caverhill, C. An estimate of global primary production in the ocean from satellite radiometer data. J. Plankton Res. 17, 1245–1271 (1995).

    Google Scholar 

  • 12.

    Zubkov, M. V. Faster growth of the major prokaryotic versus eukaryotic CO2 fixers in the oligotrophic ocean. Nat. Commun. 5, 3776 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782 (2007).

    CAS  PubMed  Google Scholar 

  • 14.

    Laws, E. A., Falkowski, P. G., Smith, W. O. Jr., Ducklow, H. & McCarthy, J. J. Temperature effects on export production in the open ocean. Glob. Biogeochem. Cycles 14, 1231–1246 (2000).

    ADS  CAS  Google Scholar 

  • 15.

    Moran, M. A. et al. Deciphering ocean carbon in a changing world. Proc. Natl. Acad. Sci. 113, 3143–3151 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 16.

    Sheik, A. R. et al. Responses of the coastal bacterial community to viral infection of the algae Phaeocystis globosa. ISME J. 8, 212 (2014).

    CAS  PubMed  Google Scholar 

  • 17.

    Nelson, C. E. & Carlson, C. A. Tracking differential incorporation of dissolved organic carbon types among diverse lineages of Sargasso Sea bacterioplankton. Environ. Microbiol. 14, 1500–1516 (2012).

    CAS  PubMed  Google Scholar 

  • 18.

    Ogawa, H., Amagai, Y., Koike, I., Kaiser, K. & Benner, R. Production of refractory dissolved organic matter by bacteria. Science 292, 917–920 (2001).

    ADS  CAS  PubMed  Google Scholar 

  • 19.

    Kawasaki, N. & Benner, R. Bacterial release of dissolved organic matter during cell growth and decline: molecular origin and composition. Limnol. Oceanogr. 51, 2170–2180 (2006).

    ADS  CAS  Google Scholar 

  • 20.

    Lara, R. J. & Thomas, D. N. Formation of recalcitrant organic matter: humification dynamics of algal derived dissolved organic carbon and its hydrophobic fractions. Mar. Chem. 51, 193–199 (1995).

    CAS  Google Scholar 

  • 21.

    Gruber, D. F., Simjouw, J.-P., Seitzinger, S. P. & Taghon, G. L. Dynamics and characterization of refractory dissolved organic matter produced by a pure bacterial culture in an experimental predator-prey system. Appl. Environ. Microbiol. 72, 4184–4191 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Middelboe, M. & Jørgensen, N. O. Viral lysis of bacteria: an important source of dissolved amino acids and cell wall compounds. J. Mar. Biol. Assoc. UK 86, 605–612 (2006).

    CAS  Google Scholar 

  • 23.

    Stenson, A. C., Landing, W. M., Marshall, A. G. & Cooper, W. T. Ionization and fragmentation of humic substances in electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry. Anal. Chem. 74, 4397–4409. https://doi.org/10.1021/ac020019f (2002).

    CAS  Article  PubMed  Google Scholar 

  • 24.

    Koch, B. & Dittmar, T. From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun. Mass Spectrom. 20, 926–932 (2006).

    ADS  CAS  Google Scholar 

  • 25.

    Osterholz, H., Niggemann, J., Giebel, H.-A., Simon, M. & Dittmar, T. Inefficient microbial production of refractory dissolved organic matter in the ocean. Nat. Commun. 6, 1–8 (2015).

    Google Scholar 

  • 26.

    Vorobev, A. et al. Identifying labile DOM components in a coastal ocean through depleted bacterial transcripts and chemical signals. Environ. Microbiol. 20, 3012–3030 (2018).

    CAS  PubMed  Google Scholar 

  • 27.

    Dittmar, T. & Arnosti, C. In Microbial Ecology of the Oceans (eds Gasol, J. M. & Kirchman, D. L.) 189–230 (Wiley, New York, 2018).

    Google Scholar 

  • 28.

    Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686 (2014).

    CAS  PubMed  Google Scholar 

  • 29.

    Suttle, C. A. Marine viruses—major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801 (2007).

    CAS  PubMed  Google Scholar 

  • 30.

    Redfield, A. C. The biological control of chemical factors in the environment. Am. Sci. 46, 230A-A221 (1958).

    Google Scholar 

  • 31.

    Martiny, A. C. et al. Strong latitudinal patterns in the elemental ratios of marine Plankton and organic matter. Nat. Geosci. 6, 279 (2013).

    ADS  CAS  Google Scholar 

  • 32.

    Letscher, R. T. & Moore, J. K. Preferential remineralization of dissolved organic phosphorus and non-redfield DOM dynamics in the global ocean: Impacts on marine productivity, nitrogen fixation, and carbon export. Glob. Biogeochem. Cycles 29(3), 325–340 (2015).

    ADS  CAS  Google Scholar 

  • 33.

    Hopkinson, C. S. Jr., Vallino, J. J. & Nolin, A. Decomposition of dissolved organic matter from the continental margin. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 4461–4478 (2002).

    ADS  CAS  Google Scholar 

  • 34.

    Kim, T.-H. & Kim, G. Factors controlling the C:N:P stoichiometry of dissolved organic matter in the N-limited, cyanobacteria-dominated East/Japan Sea. J. Mar. Syst. 115, 1–9 (2013).

    CAS  Google Scholar 

  • 35.

    Letscher, R. T., Hansell, D. A., Carlson, C. A., Lumpkin, R. & Knapp, A. N. Dissolved organic nitrogen in the global surface ocean: distribution and fate. Glob. Biogeochem. Cycles 27, 141–153 (2013).

    ADS  CAS  Google Scholar 

  • 36.

    Kirchman, D. L., Suzuki, Y., Garside, C. & Ducklow, H. W. High turnover rates of dissolved organic carbon during a spring phytoplankton bloom. Nature 352, 612 (1991).

    ADS  CAS  Google Scholar 

  • 37.

    Martinez-Perez, C. et al. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat. Microbiol. 1, 16163 (2016).

    CAS  PubMed  Google Scholar 

  • 38.

    Weiss, M. et al. Molecular architecture and electrostatic properties of a bacterial porin. Science 254, 1627–1630 (1991).

    ADS  CAS  PubMed  Google Scholar 

  • 39.

    Wienhausen, G. et al. The Exometabolome of two model strains of the roseobacter group: a marketplace of microbial metabolites. Front. Microbiol. 8, 1985 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Paerl, R. W. et al. Use of plankton-derived vitamin B1 precursors, especially thiazole-related precursor, by key marine picoeukaryotic phytoplankton. ISME J. 11(3), 753–765 (2017).

    CAS  PubMed  Google Scholar 

  • 41.

    Sun, L. et al. Light-induced aggregation of microbial exopolymeric substances. Chemosphere 181, 675–681 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 42.

    Hopkinson, C. S. Jr. & Vallino, J. J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433, 142 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 43.

    Burkhardt, B. G., Watkins-Brandt, K. S., Defforey, D., Paytan, A. & White, A. E. Remineralization of phytoplankton-derived organic matter by natural populations of heterotrophic bacteria. Mar. Chem. 163, 1–9 (2014).

    CAS  Google Scholar 

  • 44.

    Letscher, R. T., Moore, J. K., Teng, Y.-C. & Primeau, F. Variable C:N:P stoichiometry of dissolved organic matter cycling in the community earth system model. Biogeosciences 12, 209–221 (2015).

    ADS  CAS  Google Scholar 

  • 45.

    Somes, C. J. & Oschlies, A. On the influence of “non-Redfield” dissolved organic nutrient dynamics on the spatial distribution of N2 fixation and the size of the marine fixed nitrogen inventory. Global Biogeochem. Cycles 29, 973–993 (2015).

    ADS  CAS  Google Scholar 

  • 46.

    Kellerman, A. M. et al. Unifying concepts linking dissolved organic matter composition to persistence in aquatic ecosystems. Environ. Sci. Technol. 52, 2538–2548 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 47.

    Zark, M., Christoffers, J. & Dittmar, T. Molecular properties of deep-sea dissolved organic matter are predictable by the central limit theorem: evidence from tandem FT-ICR-MS. Mar. Chem. 191, 9–15 (2017).

    CAS  Google Scholar 

  • 48.

    Landa, M. et al. Phylogenetic and structural response of heterotrophic bacteria to dissolved organic matter of different chemical composition in a continuous culture study. Environ. Microbiol. 16(6), 1668–1681 (2014).

    CAS  PubMed  Google Scholar 

  • 49.

    Arnosti, C. et al. Anoxic carbon degradation in Arctic sediments: Microbial transformations of complex substrates. Geochim. Cosmochim. Acta 69(9), 2309–2320 (2005).

    ADS  CAS  Google Scholar 

  • 50.

    Herlemann, D. P. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res. 41, D590–D596 (2012).

    PubMed  Google Scholar 

  • 54.

    Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Dittmar, T., Koch, B., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. Methods 6, 230–235 (2008).

    CAS  Google Scholar 

  • 56.

    Riedel, T. & Dittmar, T. A method detection limit for the analysis of natural organic matter via Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 86, 8376–8382. https://doi.org/10.1021/ac501946m (2014).

    CAS  Article  PubMed  Google Scholar 

  • 57.

    Riedel, T., Biester, H. & Dittmar, T. Molecular fractionation of dissolved organic matter with metal salts. Environ. Sci. Technol. 46, 4419–4426. https://doi.org/10.1021/es203901u (2012).

    ADS  CAS  Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Retreat of large carnivores across the giant panda distribution range

    Male swarming aggregation pheromones increase female attraction and mating success among multiple African malaria vector mosquito species