in

Rapid climate change results in long-lasting spatial homogenization of phylogenetic diversity

  • 1.

    Graham, C. H., Moritz, C. & Williams, S. E. Habitat history improves prediction of biodiversity in rainforest fauna. Proc. Natl Acad. Sci. USA 103, 632–636 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    Jansson, R. Global patterns in endemism explained by past climatic change. Proc. R. Soc. B 270, 583–590 (2003).

    PubMed  Google Scholar 

  • 3.

    Rosenzweig, M. L. Species Diversity in Space and Time. (Cambridge University Press, Cambridge, 1995).

  • 4.

    Rosauer, D. F. & Jetz, W. Phylogenetic endemism in terrestrial mammals. Glob. Ecol. Biogeogr. 24, 168–179 (2015).

    Google Scholar 

  • 5.

    Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. USA 97, 9115–9120 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • 6.

    Sandel, B. et al. The influence of late quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 7.

    Nathan, R. et al. Spread of North American wind-dispersed trees in future environments. Ecol. Lett. 14, 211–219 (2011).

    PubMed  Google Scholar 

  • 8.

    Malcolm, J. R., Markham, A., Neilson, R. P. & Garaci, M. Estimated migration rates under scenarios of global climate change. J. Biogeogr. 29, 835–849 (2002).

    Google Scholar 

  • 9.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 10.

    Donoghue, M. J. A phylogenetic perspective on the distribution of plant diversity. Proc. Natl Acad. Sci. USA 105, 11549–11555 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 11.

    McLachlan, J. S., Clark, J. S. & Manos, P. S. Molecular indicators of tree migration capacity under rapid climate change. Ecology 86, 2088–2098 (2005).

    Google Scholar 

  • 12.

    Thuiller, W. et al. Consequences of climate change on the tree of life in Europe. Nature 470, 531–534 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 13.

    Gonzalez-Orozco, C. E. et al. Phylogenetic approaches reveal biodiversity threats under climate change. Nat. Clim. Change 6, 1110–1114 (2016).

    ADS  Google Scholar 

  • 14.

    Pollock, L. J., Thuiller, W. & Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 546, 141–144 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 15.

    Forest, F. et al. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445, 757–760 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 16.

    Weinstein, B. G. et al. Taxonomic, phylogenetic, and trait beta diversity in South American hummingbirds. Am. Nat. 184, 211–224 (2014).

    PubMed  Google Scholar 

  • 17.

    IPCC. Climate Change 2014 impacts, adaptation, and vulnerability part A: global and sectoral aspects working group II contribution to the fifth assessment report of the intergovernmental panel on climate change foreword (Cambridge, New York, 2014).

  • 18.

    IPBES. The IPBES regional assessment report on biodiversity and ecosystem services for Europe and Central Asia (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, 2018).

  • 19.

    Lomolino, M. V., Riddle, B. R. & Whittaker, R. J. Biogeography Biological Diversity Across Space and Time. 5th edn (Sinauer Associates, Sunderland, MA, 2017).

  • 20.

    Saladin, B. et al. Environment and evolutionary history shape phylogenetic turnover in European tetrapods. Nat. Commun. 10, 1–9 (2019).

  • 21.

    Eiserhardt, W. L., Svenning, J. C., Baker, W. J., Couvreur, T. L. P. & Balslev, H. Dispersal and niche evolution jointly shape the geographic turnover of phylogenetic clades across continents. Sci. Rep. 3, 1164 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Rampal, E. et al. A minimal model for the latitudinal diversity gradient suggests a dominant role for ecological limits. Am. Nat. 194, E122–E133 (2019).

  • 23.

    Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19, 639–644 (2004).

    PubMed  Google Scholar 

  • 24.

    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).

    Google Scholar 

  • 25.

    Pointing, S. B., Bollard-Breen, B. & Gillman, L. N. Diverse cryptic refuges for life during glaciation. Proc. Natl Acad. Sci. USA 111, 5452–5453 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 26.

    Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).

    Google Scholar 

  • 27.

    Taberlet, P., Fumagalli, L., Wust-Saucy, A. G. & Cosson, J. F. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453–464 (1998).

    CAS  PubMed  Google Scholar 

  • 28.

    Hewitt, G. M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58, 247–276 (1996).

    Google Scholar 

  • 29.

    Svenning, J. C. Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecol. Lett. 6, 646–653 (2003).

    Google Scholar 

  • 30.

    Huntley, B. & Birks, H. J. B. An Atlas of Past and Present Pollen Maps for Europe: 0–13000 Years Ago. (Cambridge University Press, Cambridge, 1983).

  • 31.

    Petit, R. J. et al. Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300, 1563–1565 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 32.

    Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to quaternary climate change. Science 292, 673–679 (2001).

    ADS  CAS  PubMed  Google Scholar 

  • 33.

    Hewitt, G. M. Genetic consequences of climatic oscillations in the quaternary. Philos. T. R. Soc. B 359, 183–195 (2004).

    CAS  Google Scholar 

  • 34.

    Tzedakis, P. C., Emerson, B. C. & Hewitt, G. M. Cryptic or mystic? Glacial tree refugia in Northern Europe. Trends Ecol. Evol. 28, 696–704 (2013).

    CAS  PubMed  Google Scholar 

  • 35.

    Garcia Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: an r package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 00, 1–8 (2019).

    Google Scholar 

  • 36.

    Nobis, M. P. & Normand, S. KISSMig—a simple model for R to account for limited migration in analyses of species distributions. Ecography 37, 1282–1287 (2014).

    Google Scholar 

  • 37.

    Thuiller, W., Lavorel, S., Araujo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl Acad. Sci. USA 102, 8245–8250 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 38.

    Svenning, J. C. & Skov, F. Limited filling of the potential range in European tree species. Ecol. Lett. 7, 565–573 (2004).

    Google Scholar 

  • 39.

    Svenning, J. C., Normand, S. & Skov, F. Range filling in European trees. J. Biogeogr. 33, 2018–2221 (2006).

    Google Scholar 

  • 40.

    Svenning, J. C. & Skov, F. Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecol. Lett. 10, 453–460 (2007).

    PubMed  Google Scholar 

  • 41.

    Normand, S. et al. Postglacial migration supplements climate in determining plant species ranges in Europe. Proc. R. Soc. B 278, 3644–3653 (2011).

    PubMed  Google Scholar 

  • 42.

    Arita, H. T. & Rodriguez, P. Geographic range, turnover rate and the scaling of species diversity. Ecography 25, 541–550 (2002).

    Google Scholar 

  • 43.

    Slatyer, R. A., Hirst, M. & Sexton, J. P. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104–1114 (2013).

    PubMed  Google Scholar 

  • 44.

    Kambach, S. et al. Of niches and distributions: range size increases with niche breadth both globally and regionally but regional estimates poorly relate to global estimates. Ecography 42, 467–477 (2019).

    Google Scholar 

  • 45.

    Warren, M. S. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69 (2001).

    ADS  CAS  PubMed  Google Scholar 

  • 46.

    Hortal, J. et al. Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecol. Lett. 14, 741–748 (2011).

    PubMed  Google Scholar 

  • 47.

    Pedreschi, D. et al. Challenging the European southern refugium hypothesis: species-specific structures versus general patterns of genetic diversity and differentiation among small mammals. Glob. Ecol. Biogeogr. 28, 262–274 (2019).

    Google Scholar 

  • 48.

    Dullinger, S. et al. Post-glacial migration lag restricts range filling of plants in the European Alps. Glob. Ecol. Biogeogr. 21, 829–840 (2012).

    Google Scholar 

  • 49.

    Kuhne, G., Kosuch, J., Hochkirch, A. & Schmitt, T. Extra-Mediterranean glacial refugia in a Mediterranean faunal element: the phylogeography of the chalk-hill blue Polyommatus coridon (Lepidoptera, Lycaenidae). Sci. Rep. 7, 43533 (2017).

  • 50.

    Svenning, J. C., Normand, S. & Kageyama, M. Glacial refugia of temperate trees in Europe: insights from species distribution modelling. J. Ecol. 96, 1117–1127 (2008).

    Google Scholar 

  • 51.

    Willis, K. J., Rudner, E. & Sumegi, P. The full-glacial forests of central and southeastern Europe. Quat. Res. 53, 203–213 (2000).

    Google Scholar 

  • 52.

    Stewart, J. R. & Lister, A. M. Cryptic northern refugia and the origins of the modern biota. Trends Ecol. Evol. 16, 608–613 (2001).

    Google Scholar 

  • 53.

    Schonswetter, P., Stehlik, I., Holderegger, R. & Tribsch, A. Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol. Ecol. 14, 3547–3555 (2005).

    CAS  PubMed  Google Scholar 

  • 54.

    Abbott, R. J. et al. Molecular analysis of plant migration and refugia in the Arctic. Science 289, 1343–1346 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • 55.

    Stewart, J. R., Lister, A. M., Barnes, I. & Dalen, L. Refugia revisited: individualistic responses of species in space and time. Proc. R. Soc. B 277, 661–671 (2010).

    PubMed  Google Scholar 

  • 56.

    Lenoir, J. et al. Cross-scale analysis of the region effect on vascular plant species diversity in Southern and Northern European mountain ranges. PLoS ONE 5, e15734 (2010).

  • 57.

    IPCC. Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. (Cambridge University Press, Cambridge, New York, 2013).

  • 58.

    Jalas, J. & Suominen, J. Atlas Florae Europaeae, vol. 1–12. (The committee for mapping the flora of Europe & Societas Biologica Fennica Vanamo, Helsinki, 1999).

  • 59.

    Kurtto, A., Sennikov, A. N. & Lampinen, R. Atlas Florae Europaeae, vol. 13–16. (The committee for mapping the flora of Europe & Societas Biologica Fennica Vanamo, Helsinki, 2013).

  • 60.

    TPL. The Plant List Version 1.1 (The Plant List, 2013). http://www.theplantlist.org/.

  • 61.

    Cayuela, L., Stein, A. & Oksanen, J. Taxonstand: taxonomic standardization of plant species names. R package version 2.1. https://CRAN.R-project.org/package=Taxonstand (2017).

  • 62.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2018). https://www.R-project.org/.

  • 63.

    Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).

    Google Scholar 

  • 64.

    The information resource for euro-mediterranean plant diversity (Euro+Med PlantBase, 2006). http://ww2.bgbm.org/EuroPlusMed/.

  • 65.

    Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).

    PubMed  Google Scholar 

  • 66.

    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 67.

    Qian, H. & Zhang, J. Using an updated time-calibrated family-level phylogeny of seed plants to test for non-random patterns of life forms across the phylogeny. J. Syst. Evol. 52, 423–430 (2014).

    Google Scholar 

  • 68.

    Webb, C. O., Ackerly, D. D. & Kembel, S. W. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098–2100 (2008).

    CAS  PubMed  Google Scholar 

  • 69.

    Redelings, B. D. & Holder, M. T. A supertree pipeline for summarizing phylogenetic and taxonomic information for millions of species. Peerj 5, e3058 (2017).

  • 70.

    Synthesis release Open Tree of Life version 9.1 (Open Tree of Life, 2017). https://tree.opentreeoflife.org/about/synthesis-release/v9.1.

  • 71.

    Magallon, S., Gomez-Acevedo, S., Sanchez-Reyes, L. L. & Hernandez-Hernandez, T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. N. Phytol. 207, 437–453 (2015).

    Google Scholar 

  • 72.

    Hijmans, R. J. Raster: geographic data analysis and modeling, v. 2.9-23. https://CRAN.R-project.org/package=raster (2019).

  • 73.

    Garcia Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: the velocity of climate change and related climatic metrics. R package version 1.0.0. https://github.com/JorGarMol/VoCC (2019).

  • 74.

    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 75.

    Maiorano, L. et al. Building the niche through time: using 13,000 years of data to predict the effects of climate change on three tree species in Europe. Glob. Ecol. Biogeogr. 22, 302–317 (2013).

    Google Scholar 

  • 76.

    Owens, H. L. & Guralnick, R. P. ClimateStability: an R package to estimate climate stability from the time-slice climatologies. Biodivers. Inform. 14, 8–13 (2019).

    Google Scholar 

  • 77.

    Zweig, M. H. & Campbell, G. Receiver-operating characteristic (Roc) plots—a fundamental evaluation tool in clinical medicine. Clin. Chem. 39, 561–577 (1993).

    CAS  PubMed  Google Scholar 

  • 78.

    Leprieur, F. et al. Quantifying phylogenetic beta diversity: distinguishing between ‘true’ turnover of lineages and phylogenetic diversity gradients. PLoS ONE 7, e42760 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 79.

    Baselga, A. & Orme, C. D. L. Betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).

    Google Scholar 

  • 80.

    Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2006).

    Google Scholar 

  • 81.

    EEA. Elevation map of Europe. https://www.eea.europa.eu/data-and-maps/data/digital-elevation-model-of-europe (2004).

  • 82.

    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS  PubMed  Google Scholar 

  • 83.

    Wickham, H. stringr: simple, consistent wrappers for common string operations. R package version 1.3.1. https://CRAN.R-project.org/package=stringr (2018).

  • 84.

    Beygelzimer, A. et al. FNN: fast nearest neighbor search algorithms and applications. R package version 1.1.2.1. https://CRAN.R-project.org/package=FNN (2018).

  • 85.

    Bivand, R., Keitt, T. & Rowlingson, B. rgdal: bindings for the ‘Geospatial’ Data Abstraction Library. R package version 1.3-4. https://CRAN.R-project.org/package=rgdal (2018).

  • 86.

    Neuwirth, E. RColorBrewer: ColorBrewer palettes. R package version 1.1-2. https://CRAN.R-project.org/package=RColorBrewer (2014).

  • 87.

    Nychka, D., Furrer, R., Paige, J. & Sain, S. Fields: tools for spatial data. R package version 9.6. https://CRAN.R-project.org/package=fields (2017).


  • Source: Ecology - nature.com

    Did our early ancestors boil their food in hot springs?

    MIT Integrative Microbiology Initiative will stimulate environmental microbiology research