in

Inoculation of Ensifer fredii strain LP2/20 immobilized in agar results in growth promotion and alteration of bacterial community structure of Chinese kale planted soil

  • 1.

    Ramakrishna, W., Yadav, R. & Li, K. Plant growth promoting bacteria in agriculture: two sides of a coin. Appl. Soil Ecol. 138, 10–18 (2019).

    Google Scholar 

  • 2.

    Yang, J. et al. Comparison of the rhizosphere soil microbial community structure and diversity between powdery mildew-infected and noninfected strawberry plants in a greenhouse by high-throughput sequencing technology. Curr. Microbiol. 77, 1724–1736 (2020).

    CAS  PubMed  Google Scholar 

  • 3.

    Nimnoi, P., Pongsilp, N. & Ruanpanun, P. Monitoring the efficiency of Streptomyces galilaeus strain KPS-C004 against root knot disease and the promotion of plant growth in the plant-parasitic nematode infested soils. Biol. Control 114, 158–166 (2017).

    Google Scholar 

  • 4.

    Wei, X., Wang, X., Cao, P., Gao Z., Chen, A. J. & Han, J. Microbial community changes in the rhizosphere soil of healthy and rusty Panax ginseng and discovery of pivotal fungal genera associated with rusty roots. Biomed Res. Int. 2020, 8018525 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 5.

    Karlidag, H., Esitken, A., Turan, M. & Sahin, F. Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci. Hortic. 114, 16–20 (2007).

    CAS  Google Scholar 

  • 6.

    Turan, M. et al. Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turk. J. Agric. For. 38, 327–333 (2014).

    ADS  CAS  Google Scholar 

  • 7.

    Mantelin, S. & Touraine, B. Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J. Exp. Bot. 55, 27–34 (2004).

    CAS  PubMed  Google Scholar 

  • 8.

    Sivakumar, P. K., Parthasarthi, R. & Lakshmipyriya, V. P. Encapsulation of plant growth promoting inoculant in bacterial alginate beads enriched with humic acid. Int. J. Curr. Microbiol. Appl. Sci. 3, 415–422 (2014).

    Google Scholar 

  • 9.

    Nimnoi, P., Pongsilp, N. & Lumyong, S. The establishment and activity of bacterial inoculant immobilized in agar compared with those of alginate and perlite after being introduced into soil. Chiang Mai J. Sci. 44, 751–767 (2017).

    CAS  Google Scholar 

  • 10.

    Piromyou, P. et al. Indigenous microbial community structure in rhizosphere of Chinese kale as affected by plant growth-promoting rhizobacteria inoculation. Pedosphere 23, 577–592 (2013).

    CAS  Google Scholar 

  • 11.

    Li, T. et al. Changes in soil bacterial community structure as a result of incorporation of Brassica plants compared with continuous planting eggplant and chemical disinfection in greenhouses. PLoS ONE 12, e0173923 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 12.

    Bouyoucos, G. J. Hydrometer method improved for making particle size analyses of soils. Agron. J. 54, 464–465 (1962).

    Google Scholar 

  • 13.

    Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38 (1934).

    ADS  CAS  Google Scholar 

  • 14.

    Bray, R. H. & Kurtz, L. T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59, 39–46 (1945).

    ADS  CAS  Google Scholar 

  • 15.

    Jackson, M. L. Soil Chemical Analysis (Prentice Hall, New Delhi, India, 1967).

    Google Scholar 

  • 16.

    Bergersen, F. J. Measurement of nitrogen fixation by direct means. In Methods for Evaluating Biological Nitrogen Fixation (ed. Bergersen, F. J.) 65–110 (Wiley, New York, 1980).

    Google Scholar 

  • 17.

    Bradstreet, R. B. Kjeldahl method for organic nitrogen. Anal. Chem. 26, 185–187 (1954).

    CAS  Google Scholar 

  • 18.

    Cavell, A. J. The colorimetric determination of phosphorus in plant materials. J. Sci. Food Agric. 6, 479–480 (1955).

    CAS  Google Scholar 

  • 19.

    Walinga, I., van Vark, W. & Houba, V. J. G. Plant Analysis Procedures (Wageningen Agricultural University Academic Publisher, Wageningen, 1989).

    Google Scholar 

  • 20.

    Helmke, P. A. & Sparks, D. L. Lithium, sodium, potassium, rubidium and cesium, in Methods of Soil Analysis. Part 3, Chemical Methods (ed. Sparks, D. L.) 551–574 (Soil Science Society of America, Inc. and American Society of Agronomy, Inc., Madison, Wisconsin, USA, 1996).

    Google Scholar 

  • 21.

    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).

    Google Scholar 

  • 22.

    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    CAS  PubMed  Google Scholar 

  • 23.

    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 24.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 28.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS  PubMed  Google Scholar 

  • 29.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2013).

    Google Scholar 

  • 32.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2009).

    Google Scholar 

  • 33.

    Nimnoi, P. & Pongsilp, N. Marine bacterial communities in the upper gulf of Thailand assessed by lllumina next-generation sequencing platform. BMC Microbiol. 20, 19 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Gu, Y. et al. The effect of microbial inoculant origin on the rhizosphere bacterial community composition and plant growth-promotion. Plant Soil 452, 105–117 (2020).

    CAS  Google Scholar 

  • 35.

    Schoebitz, M., López, M. D. & Roldán, A. Bioencapsulation of microbial inoculants for better soil–plant fertilization. A review. Agron. Sustain. Dev. 33, 751–765 (2013).

    CAS  Google Scholar 

  • 36.

    Wu, Z., Guo, L., Qin, S. & Li, C. Encapsulation of R. planticola Rs-2 from alginate–starch–bentonite and its controlled release and swelling behavior under simulated soil conditions. J. Ind. Microbiol. Biotechnol. 39, 317–327 (2012).

    CAS  PubMed  Google Scholar 

  • 37.

    García, J. A. L., Probanza, A., Ramos, B., Barriuso, J. & Mañero, F. J. G. Effects of inoculation with plant growth promoting rhizobacteria (PGPRs) and Sinorhizobium fredii on biological nitrogen fixation, nodulation and growth of Glycine max cv. Osumi. Plant Soil 267, 143–153 (2004).

    Google Scholar 

  • 38.

    Glick, B. R. Plant growth-promoting bacteria: mechanisms and application. Scientifica 2012, 963401 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 39.

    Jiménez-Guerrero, I. et al. The Sinorhizobium (Ensifer) fredii HH103 type 3 secretion system suppresses early defense responses to effectively nodulate soybean. Mol. Plant Microbe Interact. 28, 790–799 (2015).

    PubMed  Google Scholar 

  • 40.

    Temprano-Vera, F. et al. Sinorhizobium fredii strains HH103 and NGR234 form nitrogen fixing nodules with diverse wild soybeans (Glycine soja) from central China but are ineffective on northern China accessions. Front. Microbiol. 9, 2843 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Rodríguez-Navarro, D. N., Temprano, F. & Orive, R. Survival of Rhizobium sp. (Hedysarum coronarium L.) on peat-based inoculants and inoculated seeds. Soil Biol. Biochem. 23, 375–379 (1991).

    Google Scholar 

  • 42.

    Khavazi, K., Rejali, F., Seguin, P. & Miransari, M. Effects of carrier, sterilisation method, and incubation on survival of Bradyrhizobium japonicum in soybean (Glycine max L.) inoculants. Enzyme Microb. Technol. 41, 780–784 (2007).

    CAS  Google Scholar 

  • 43.

    Daza, A. et al. Perlite as a carrier for bacterial inoculants. Soil Biol. Biochem. 32, 567–572 (2000).

    CAS  Google Scholar 

  • 44.

    Bashan, Y., Hernandez, J. P., Leyva, L. A. & Bacilio, M. Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol. Fertil. Soils 35, 359–368 (2002).

    Google Scholar 

  • 45.

    Kiran, K. K., Koteswaraiah, P. & Chandra, T. S. Production of halophilic α-amylase by immobilized cells of moderately halophilic Bacillus sp. strain TSCVKK. Br. Microbiol. Res. J. 2, 146–157 (2012).

    CAS  Google Scholar 

  • 46.

    Schoebitz, M., Ceballos, C. & Ciampi, L. Effect of immobilized phosphate solubilizing bacteria on wheat growth and phosphate uptake. J. Soil Sci. Plant. Nutr. 13, 1–10 (2013).

    Google Scholar 

  • 47.

    Wu, Z., He, Y., Chen, L., Han, Y. & Li, C. Characterization of Raoultella planticola Rs-2 microcapsule prepared with a blend of alginate and starch and its release behavior. Carbohydr. Polym. 110, 259–267 (2014).

    CAS  PubMed  Google Scholar 

  • 48.

    He, Y. et al. Viability evaluation of alginate-encapsulated Pseudomonas putida Rs-198 under simulated salt-stress conditions and its effect on cotton growth. Eur. J. Soil Biol. 75, 135–141 (2016).

    Google Scholar 

  • 49.

    Guo, L., Wu, Z., Rasool, A. & Li, C. Effects of free and encapsulated co-culture bacteria on cotton growth and soil bacterial communities. Eur. J. Soil Biol. 53, 16–22 (2012).

    CAS  Google Scholar 

  • 50.

    Wu, Z., Zhao, Y., Kaleem, I. & Li, C. Preparation of calcium-alginate microcapsuled microbial fertilizer coating Klebsiella oxytoca Rs-5 and its performance under salinity stress. Eur. J. Soil Biol. 47, 152–159 (2011).

    CAS  Google Scholar 

  • 51.

    Minaxi, J. S. Efficacy of rhizobacterial strains encapsulated in nontoxic biodegradable gel matrices to promote growth and yield of wheat plants. Appl. Soil Ecol. 48, 301–308 (2011).

    Google Scholar 

  • 52.

    Jain, R., Saxena, J. & Sharma, V. The evaluation of free and encapsulated Aspergillus awamori for phosphate solubilization in fermentation and soil–plant system. Appl. Soil Ecol 46, 90–94 (2010).

    Google Scholar 

  • 53.

    Jain, R., Saxena, J. & Sharma, V. Differential effects of immobilized and free forms of phosphate-solubilizing fungal strains on the growth and phosphorus uptake of mung bean plants. Ann. Microbiol. 64, 1523–1534 (2014).

    CAS  Google Scholar 

  • 54.

    Sankaralingam, S., Shankar, T., Sendeshkannan, K., Ramasubburayan, R. & Prakash, S. Production of protease from Pseudomonas sp. by immobilization approach on different matrices. Eur. J. Appl. Sci. 4, 146–156 (2012).

    CAS  Google Scholar 

  • 55.

    Ding, J. et al. Effect of 35 years inorganic fertilizer and manure amendment on structure of bacterial and archaeal communities in black soil of northeast China. Appl. Soil Ecol. 105, 187–195 (2016).

    Google Scholar 

  • 56.

    Li, F., Chen, L., Zhang, J., Yin, J. & Huang, S. Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Front. Microbiol. 8, 187 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 57.

    Ghosh, P. K. & Maiti, T. K. Structure of extracellular polysaccharides (EPS) produced by rhizobia and their functions in legume–bacteria symbiosis: a review. Achiev. Life Sci. 10, 136–143 (2016).

    Google Scholar 

  • 58.

    O’Brien, F. J. M., Dumont, M. G., Webb, J. S. & Poppy, G. M. Rhizosphere bacterial communities differ according to fertilizer regimes and cabbage (Brassica oleracea var. capitata L.) harvest time, but not aphid herbivory. Front. Microbiol. 9, 1620 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 59.

    Zhang, X. et al. Rhizosphere microbial community structure is selected by habitat but not plant species in two tropical seagrass beds. Front. Microbiol. 11, 161 (2020).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 60.

    Wang, M. et al. Soil chemical property changes in eggplant/garlic relay intercropping systems under continuous cropping. PLoS ONE 9, e111040 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Genetic structure in Orkney island mice: isolation promotes morphological diversification

    Leaf versus whole-canopy remote sensing methodologies for crop monitoring under conservation agriculture: a case of study with maize in Zimbabwe