Sulser, T. B., Mason-D’Croz, D., Robinson, S., Wiebe, K. & Rosegrant, M. W. Africa in the global agricultural economy in 2030 and 2050. In ReSAKSS Annual Trends and Outlook report 2014 (eds Badiane, O. & Makombe, T.). International Food Policy Research Institute (IFPRI). (2015).
Van Ittersum, M. K. et al. Can sub-Saharan Africa feed itself?. Proc. Natl. Acad. Sci. U.S.A. 113, 14964–14969 (2016).
Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).
Thierfelder, C., Matemba-Mutasa, R. & Rusinamhodzi, L. Yield response of maize (Zea mays L.) to conservation agriculture cropping system in Southern Africa. Soil Till. Res. 146, 230–242 (2015).
Good, A. G. & Beatty, P. H. Fertilizing nature: a tragedy of excess in the commons. PLoS Biol. 9, e1001124 (2011).
Reicosky, D. C., Sauer, T. J. & Hatfi, J. L. Challenging balance between productivity and environmental quality: tillage impacts. In Soil Management: Building a Stable Base for Agriculture Vol. 1373 (eds Hatfield, J. L. & Sauer, T. J.) 13–37 (ASA and SSSA, Madison, 2011).
Thierfelder, C., Rusinamhodzi, L., Setimela, P., Walker, F. & Eash, N. S. Conservation agriculture and drought-tolerant germplasm: reaping the benefits of climate-smart agriculture technologies in central Mozambique. Renew. Agric. Food Syst. 31, 414–428 (2016).
Vanlauwe, B. et al. Agronomic use efficiency of N fertilizer in maize-based systems in sub-Saharan Africa within the context of integrated soil fertility management. Plant Soil 339, 35–50 (2011).
Giller, K. E. et al. A research agenda to explore the role of conservation agriculture in African smallholder farming systems. Field Crops Res. 124, 468–472 (2011).
Jaleta, M., Kassie, M. & Shiferaw, B. Tradeoffs in crop residue utilization in mixed crop—livestock systems and implications for conservation agriculture. Agric. Syst. 121, 96–105 (2013).
Baudron, F., Delmotte, S., Corbeels, M., Herrera, J. M. & Tittonell, P. Multi-scale trade-off analysis of cereal residue use for livestock feeding vs. soil mulching in the Mid-Zambezi Valley, Zimbabwe. Agric. Syst. 134, 97–106 (2015).
Valbuena, D. et al. Conservation agriculture in mixed crop-livestock systems: scoping crop residue trade-offs in Sub-Saharan Africa and South Asia. Field Crop Res. 132, 175–184 (2012).
Guto, S. N. Chakula bila kulima? Trade-offs concerning soil and water conservation in heterogeneous smallholder farms of Central Kenya. Ph.D. Thesis (2011).
Chivenge, P., Vanlauwe, B. & Six, J. Does the combined application of organic and mineral nutrient sources influence maize productivity? A meta-analysis. Plant Soil 342, 1–30 (2011).
Bullock, D. G. & Anderson, D. S. Evaluation of the Minolta SPAD-502 chlorophyll meter for nitrogen management in corn. J. Plant Nutr. 21, 741–755 (1998).
Markwell, J., Osterman, J. C. & Mitchell, J. L. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth. Res. 46, 467–472 (1995).
Cerovic, Z. G., Masdoumier, G., Ghozlen, N. B. & Latouche, G. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plantarum. 146, 251–260 (2012).
Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 5, 949–981 (2013).
Sakamoto, T. et al. An alternative method using digital cameras for continuous monitoring of crop status. Agric. For. Meteorol. 113, 154–155 (2012).
Fernandez-Gallego, J. A. et al. Low-cost assessment of grain yield in durum wheat using RGB images. Eur. J. Agron. 105, 146–156 (2019).
Araus, J. L. & Kefauver, S. C. Breeding to adapt agriculture to climate change: affordable phenotyping solutions. Curr. Opin. Plant Biol. 45, 237–247 (2018).
Gracia-Romero, A. et al. Phenotyping conservation agriculture management effects on ground and aerial remote sensing assessments of maize hybrids performance in Zimbabwe. Remote Sens. 10(2), 349 (2018).
Araus, J. L. & Cairns, J. E. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 19, 52–61 (2014).
Yousfi, S., Serret, M. D., MArquez A. J., Voltas, J. & Araus, J. L. Combined use of δ13C, δ18O and δ15N tracks nitrogen metabolism and genotypic adaptation of durum wheat to salinity and water deficit. New Phytol. 194, 230–244 (2012).
Vergara-Díaz, O. et al. A novel remote sensing approach for prediction of Maize yield under different conditions of nitrogen fertilization. Front. Plant Sci. 7, 1–13 (2016).
Araus, L., Sánchez, C. & Cabrera-Bosquet, L. Is heterosis in maize mediated through better water use?. New Phytol. 187(2), 392–406 (2010).
Thierfelder, C. & Wall, P. C. Investigating conservation agriculture (CA) systems in Zambia and Zimbabwe to mitigate future effects of climate change. J. Crop Improv. 24, 113–121 (2010).
Rusinamhodzi, L. et al. A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agron. Sustain. Dev. 31, 657–673 (2011).
Kafesu, N. et al. Comparative fertilization effects on maize productivity under conservation and conventional tillage on sandy soils in a smallholder cropping system in Zimbabwe. Field Crops Res. 218, 106–114 (2018).
Arvidsson, J., Etana, A. & Rydberg, T. Crop yield in Swedish experiments with shallow tillage and no-tillage 1983–2012. Eur. J. Agron. 52, 307–315 (2014).
Habig, J. & Swanepoel, C. Effects of conservation agriculture and fertilization on soil microbial diversity and activity. Environmental 2, 358–384 (2015).
Fonte, S. J., Quansah, G. W. & Six, J. Fertilizer and residue quality effects on organic matter stabilization in soil aggregates. Soil Biol. Biochem. 73(3), 961–966 (2009).
Gabriel, J. L. et al. Airborne and ground level sensors for monitoring nitrogen status in a maize crop. Biosyst. Eng. 160, 124–133 (2017).
Choi, W.-J., Lee, S.-M., Ro, H.-M., Kim, K.-C. & Yoo, S.-H. Natural 15N abundances of maize and soil amended with urea and composted pig manure. Plant Soil 245, 223–232 (2002).
Bateman, A. S., Kelly, S. D. & Jickells, T. D. Nitrogen isotope relationships between crops and fertilizer: implications for using nitrogen isotope analysis as an indicator of agricultural regime. J. Agric. Food Chem. 53, 5760–5765 (2005).
Serret, M. D., Ortiz-Monasterio, I., Pardo, A. & Araus, J. L. The effects of urea fertilization and genotype on yield, nitrogen use efficiency, δ15N and δ13C in wheat. Ann. Appl. Biol. 153, 243–257 (2008).
Amundson, R. et al. Global patterns of the isotopic composition of soil and plant nitrogen. Glob. Biogeochem. Cycles https://doi.org/10.1029/2002GB001903 (2003).
Farquhar, G. D., Ehleringer, R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–537 (1989).
Monneveux, P., Sheshshayee, M. S., Akhter, J. & Ribaut, J. M. Using carbon isotope discrimination to select maize (Zea mays L.) inbred lines and hybrids for drought tolerance. Plant Sci. 173, 390–396 (2007).
Cabrera-Bosquet, L., Molero, G., Nogués, S. & Araus, J. L. Water and nitrogen conditions affect the relationships of Δ13C and Δ18O to gas exchange and growth in durum wheat. J. Exp. Bot. 60, 1633–1644 (2009).
Farquhar, G. D. On the nature of carbon isotope discrimination in C4 species. Aust. J. Plant Physiol. 10, 205 (1983).
Evans, J. R. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Phys. 5, 297–302 (1983).
Szabó, É. Effect of some physiological properties on the quality parameters of different winter wheat varieties in a long-term experiment. Cereal Res. Commun. 42, 126–138 (2013).
Giunta, F., Motzo, R. & Deidda, M. SPAD readings and associated leaf traits in durum wheat, barley and triticale cultivars. Euphytica 125, 197–205 (2002).
Zhang, Y., Tremblay, N. & Zhu, J. Evaluation of the Multiplex® fluorescence sensor for the assessment of corn nitrogen status. J. Food Agric. Environ. 10(1), 1008–1016 (2012).
Cairns, J. E., Sanchez, C., Vargas, M., Ordoñez, R. & Araus, J. L. Dissecting maize productivity: ideotypes associated with grain yield under drought stress and well-watered conditions. J. Integr. Plant Biol. 54, 1007–1020 (2012).
Buchaillot, M. L. et al. Evaluating maize genotype performance under low nitrogen conditions using RGB UAV phenotyping techniques. Sensors 19(8), 1815 (2019).
Monneveux, P., Sanchez, C. & Tiessen, A. Future progress in drought tolerance in maize needs new secondary traits and cross combinations. J. Agric. Sci. 146, 287–300 (2008).
Hu, H. et al. Assessment of chlorophyll content based on image color analysis, comparison with SPAD-502. In 2nd International Conference on Information Engineering and Computer Science—Proceedings, ICIECS 2010 (2010).
Sevik, H., Belkaylai, N. & Aktar, G. Change of chlorophyll amount in some landscape plants. J. Biotech. Sci. 2(1), 10–16 (2014).
Sevik, H., Karakas, H. & Karaca, U. Color—chlorophyll relationship of some indoor ornamental plants. Int. J. Eng. Sci. Res. Technol. 2, 1706–1712 (2013).
Pointer, M. R. A comparison of the CIE 1976 colour spaces. Color Res. App. 6, 108–118 (2009).
Cooper, F. G. Munsell Manual of Color (Munsell Color Company Inc, Boston, 1929).
Carper, W. J., Lillesand, T. M. & Kiefer, R. W. The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data. Photogram. Eng. Remote Sens. 56(4), 459–467 (1990).
Hunt, E. R. Jr., Cavigelli, M., Daughtry, C. S. T., Mcmurtrey Iii, J. & Walthall, C. L. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precis. Agric. 6, 359–378 (2005).
Hunt, R. & Perry, E. M. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Obs. Geoinf. 21, 103–112 (2013).
Gracia-Romero, A. et al. Comparative performance of ground vs. Aerially assessed rgb and multispectral indices for early-growth evaluation of maize performance under phosphorus fertilization. Front. Plant Sci. 8, 2004 (2017).
Süß, A. et al. Measuring leaf chlorophyll content with the Konica Minolta SPAD-502Plus—theory, measurement, problems, interpretation. EnMAP Field Guides Technical Report, GFZ Data Services (2015).
Casadesús, J. et al. Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water-limited environments. Ann. App. Biol. 150, 227–236 (2007).
Erdle, K., Mistele, B. & Schmidhalter, U. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Res. 124, 74–84 (2011).
Zaman-Allah, M. et al. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods 11, 35 (2015).
Gracia-Romero, A., Kefauver, S. C., Fernandez-Gallego, J. A., Vergara-Díaz, O. & Araus, J. L. UAV and ground image-based phenotyping: a proof of concept with Durum wheat. Remote Sens. 11(10), 1244 (2019).
Cerovic, Z. G. et al. Nondestructive diagnostic test for nitrogen nutrition of grapevine (Vitis vinifera L.) based on dualex leaf-clip measurements in the field. J. Agric. Food Chem. 63, 3669–3680 (2015).
Bendig, J. et al. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens. 6, 10395–10412 (2014).
Coplen, T. B. & Zhu, X. K. Explanatory glossary of terms used in expression of relative isotope ratios and gas ratios. IUPAC Recommendations 1–27 (2008).
Source: Ecology - nature.com