in

Integrative ecological and molecular analysis indicate high diversity and strict elevational separation of canopy beetles in tropical mountain forests

  • 1.

    Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526. https://doi.org/10.1038/s41586-018-0301-1 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 2.

    Stork, N. E. How many species of insects and other terrestrial arthropods are there on earth?. Annu. Rev. Entomol. 63, 31–45 (2018).

    CAS  Article  Google Scholar 

  • 3.

    Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity?. Science 365, 1108–1113. https://doi.org/10.1126/science.aax0149 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 4.

    Basset, Y. et al. Arthropod diversity in a tropical forest. Science 338, 1481–1484. https://doi.org/10.1126/science.1226727 (2012).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 5.

    Erwin, T. L. Tropical forests: Their richness in Coleoptera and other arthropod species. Coleopterists Bull. 36(1), 74–75 (1982).

    Google Scholar 

  • 6.

    Sprick, P. & Floren, A. Diversity of Curculionoidea in humid rain forest canopies of Borneo: A taxonomic blank spot. Diversity 10, 116 (2018).

    Article  Google Scholar 

  • 7.

    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evolut. 2, 599–610. https://doi.org/10.1038/s41559-018-0490-x (2018).

    Article  Google Scholar 

  • 8.

    Hammond, P. M. in Insects and the Rain Forest of South East Asia (Wallacea) (eds W. J. Knight & J. D. Holloway) 197–252 (Royal Entomological Society of London, 1990).

  • 9.

    Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80. https://doi.org/10.1016/j.tree.2015.11.005 (2016).

    Article  PubMed  Google Scholar 

  • 10.

    Novotny, V. et al. Low beta diversity of herbivorous insects in tropical forests. Nature 448, 692–697 (2007).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Thormann, B. et al. Small-scale topography modulates elevational α-, β- and γ-diversity of Andean leaf beetles. Oecologia 187, 181–189. https://doi.org/10.1007/s00442-018-4108-4 (2018).

    ADS  Article  PubMed  Google Scholar 

  • 12.

    12Allison, A., Samuelson, G. A. & Miller, S. E. in Canopy Arthropods (eds N.E. Stork, J. Adis, & R.K. Didham) 237–265 (Chapman & Hall, 1997).

  • 13.

    Mupepele, A.-C., Müller, T., Dittrich, M. & Floren, A. Are temperate canopy spiders tree-species specific?. PLoS ONE 9, e86571. https://doi.org/10.1371/journal.pone.0086571 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8, e66213. https://doi.org/10.1371/journal.pone.0066213 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    15Miller, S. E., Hausmann, A., Hallwachs, W. & Janzen, D. H. Advancing taxonomy and bioinventories with DNA barcodes. Philos. Trans. R. Soc. B Biol. Sci.371, https://doi.org/10.1098/rstb.2015.0339 (2016).

  • 16.

    D’Souza, M. L. & Hebert, P. D. N. Stable baselines of temporal turnover underlie high beta diversity in tropical arthropod communities. Mol. Ecol. 27, 2447–2460. https://doi.org/10.1111/mec.14693 (2018).

    Article  PubMed  Google Scholar 

  • 17.

    Floren, A. & Linsenmair, K. E. in Arthropods of Tropical Forests: Spatio-Temporal Dynamics and Resource Use in the Canopy (eds Y. Basset, V. Novotny, S. Miller, & R. Kitching) 190–197 (Cambridge University Press, 2003).

  • 18.

    Gill, B. A. et al. Cryptic species diversity reveals biogeographic support for the “mountain passes are higher in the tropics” hypothesis. Proc. R. Soc. B Biol. Sci. 283, 20160553. https://doi.org/10.1098/rspb.2016.0553 (2016).

    Article  Google Scholar 

  • 19.

    Schmidt, S., Schmid-Egger, C., Morinière, J., Haszprunar, G. & Hebert, P. D. DNA barcoding largely supports 250 years of classical taxonomy: Identifications for Central European bees (Hymenoptera, Apoidea partim). Mol. Ecol. Resour. 15, 985–1000. https://doi.org/10.1111/1755-0998.12363 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 20.

    García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl. Acad. Sci. U.S.A. 113, 680–685. https://doi.org/10.1073/pnas.1507681113 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 21.

    Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17. https://doi.org/10.1093/icb/icj003 (2006).

    Article  PubMed  Google Scholar 

  • 22.

    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249. https://doi.org/10.1086/282487 (1967).

    Article  Google Scholar 

  • 23.

    de Bruyn, M. et al. Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity. Syst. Biol. 63, 879–901, https://doi.org/10.1093/sysbio/syu047 (2014).

  • 24.

    Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impact on tropical nature. Trends Ecol. Evol. 29, 107–116. https://doi.org/10.1016/j.tree.2013.12.001 (2014).

    Article  PubMed  Google Scholar 

  • 25.

    Carolyn, R. D., Baskoro, D. P. T. & Prasetyo, L. B. Analisis Degradasi Untuk Penyususnan Arahan Strategi Pengendaliannya Di Taman Nasional Gunung Halimun Salak Provinsi Jawa Barat. Globe 15, 39–47 (2013).

    Google Scholar 

  • 26.

    Priyadi, H. et al.Five Hundred Plant Species in Gunung Halimun Salak National Park, West Java: A Checklist Including Sundanese Names, Distribution and Use (2010).

  • 27.

    Floren, A. in Manual on Field Recording Techniques and Protocols for All Taxa Biodiversity Inventories ABC Taxa Vol. Part 1 (eds J. Eymann, J. Degreff, & C. Häuser) 158–172 (2010).

  • 28.

    Schoonhoven, L. M., van Loon, J. J. A. & Dicke, M. Insect-Plant Biology. (Oxford University Press, 2010).

  • 29.

    deWaard, J. R., Ivanova, N. V., Hajibabaei, M. & Hebert, P. D. N. in Methods in Molecular Biology: Environmental Genetics (ed C. Martin) 275–293 (Humana Press, 2008).

  • 30.

    Ivanova, N. V., deWaard, J. R. & Hebert, P. D. N. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol. Ecol. Notes6, 998–1002 (2006).

  • 31.

    Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 313–321 (2003).

  • 32.

    Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evolut., 111–120 (1980).

  • 33.

    Schmidt, S., Schmid-Egger, C., Morinière, J., Haszprunar, G. & Hebert, P. D. N. DNA barcoding largely supports 250 years of classical taxonomy: identifications for Central European bees (Hymenoptera, Apoideapartim). Mol. Ecol. Resour. 15, 985–1000 (2015).

    CAS  Article  Google Scholar 

  • 34.

    Pentinsaari, M., Hebert, P. D. N. & Mutanen, M. Barcoding Beetles: A regional survey of 1872 species reveals high identification success and unusually deep interspecific divergences. PLoS ONE9, pdf_724, https://doi.org/10.1371/journal.pone.0108651 (2014).

  • 35.

    Paradis, E., Claude, J. & Strimmer, K. APE; analyses of phylogenetics and evolution. Bioinformatics, 289–290 (2014).

  • 36.

    Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: Efficient Manipulation of Biological Strings. R Package Version 2.48.0. (2018).

  • 37.

    R, C. T. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna). https://www.R-project.org/. (2017).

  • 38.

    Oksanen, J. et al. Vegan: Community Ecology Package. R Package Version 2.5-4. https://CRAN.R-project.org/package=vegan (2019).

  • 39.

    Hsieh, T. C., Ma, K. H. & Cho, A. iNEXT: iNterpolation and EXTrapolation for Species Diversity. R Package Version 2.0.19. https://chao.stat.nthu.edu.tw/blog/software-download/. (2019).

  • 40.

    Smith, M. A., Fernandez-Triana, J., Roughley, E. & Hebert, P. D. N. DNA barcode accumulation curves for understudied taxa and areas. Mol. Ecol. Resour. 9, 208–216. https://doi.org/10.1111/j.1755-0998.2009.02646.x (2009).

    CAS  Article  PubMed  Google Scholar 

  • 41.

    Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963. https://doi.org/10.1111/ele.12141 (2013).

    Article  PubMed  Google Scholar 

  • 42.

    McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 82, 290–297. https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 (2001).

    Article  Google Scholar 

  • 43.

    Chao, A., Chazdon, R., Colwell, R. & Shen, T.-J. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62, 361–371. https://doi.org/10.1111/j.1541-0420.2005.00489.x (2006).

    MathSciNet  Article  PubMed  MATH  Google Scholar 

  • 44.

    Paradis, E. Pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 419–420 (2010).

  • 45.

    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Schliep, K. P. Phangorn: Phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

  • 47.

    Miettinen, J., Shi, C. & Liew, S. C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol. 17, 2261–2270. https://doi.org/10.1111/j.1365-2486.2011.02398.x (2011).

    ADS  Article  Google Scholar 

  • 48.

    Turubanova, S., Potapov, P. V., Tyukavina, A. & Hansen, M. C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028. https://doi.org/10.1088/1748-9326/aacd1c (2018).

    ADS  Article  Google Scholar 

  • 49.

    Longino, J. T. & Branstetter, M. G. The truncated bell: An enigmatic but pervasive elevational diversity pattern in Middle American ants. Ecography 42, 272–283. https://doi.org/10.1111/ecog.03871 (2019).

    Article  Google Scholar 

  • 50.

    Smith, M. A., Hallwachs, W. & Janzen, D. H. Diversity and phylogenetic community structure of ants along a Costa Rican elevational gradient. Ecography 37, 720–731. https://doi.org/10.1111/j.1600-0587.2013.00631.x (2014).

    Article  Google Scholar 

  • 51.

    Floren, A., Biun, A. & Linsenmair, K. E. Arboreal ants as key predators in tropical lowland rainforest trees. Oecologia 131, 137–144. https://doi.org/10.1007/s00442-002-0874-z (2002).

    ADS  Article  PubMed  Google Scholar 

  • 52.

    Supriya, K., Moreau, C. S., Sam, K. & Price, T. D. Analysis of tropical and temperate elevational gradients in arthropod abundance. Front. Biogeogr. 11, 1–11, https://doi.org/10.21425/F5FBG43104 (2019).

  • 53.

    Kress, W. J., García-Robledo, C., Uriarte, M. & Erickson, D. L. DNA barcodes for ecology, evolution, and conservation. Trends Ecol. Evol. 30, 25–35. https://doi.org/10.1016/j.tree.2014.10.008 (2015).

    Article  PubMed  Google Scholar 

  • 54.

    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406. https://doi.org/10.1126/science.1251817 (2014).

    ADS  CAS  Article  Google Scholar 

  • 55.

    Guo, Q. et al. Global variation in elevational diversity patterns. Sci. Rep. 3, 3007. https://doi.org/10.1038/srep03007 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 56.

    Bertuzzo, E. et al. Geomorphic controls on elevational gradients of species richness. Proc. Natl. Acad. Sci. 113, 1737–1742. https://doi.org/10.1073/pnas.1518922113 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 57.

    Floren, A. & Schmidl, J. Canopy Arthropod Research in Central Europe—Basic and Applied Studies from the High Frontier. (Bioform, 2008).

  • 58.

    Hodkinson, I. D. & Casson, D. A lesser predilection for bugs: Hemiptera (Insecta) diversity in tropical rain forests. Biol. J. Lin. Soc. 43, 101–109 (1991).

    Article  Google Scholar 

  • 59.

    Guerrero-Jiménez, C. J. et al. Pattern of genetic differentiation of an incipient speciation process: The case of the high Andean killifish Orestias. PLoS ONE 12, e0170380. https://doi.org/10.1371/journal.pone.0170380 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature524, 347–350, https://doi.org/10.1038/nature14949. https://www.nature.com/nature/journal/v524/n7565/abs/nature14949.html#supplementary-information (2015).

  • 61.

    Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of biodiversity. Nature546, 48, https://doi.org/10.1038/nature22897. https://www.nature.com/articles/nature22897#supplementary-information (2017).


  • Source: Ecology - nature.com

    Acidobacteria are active and abundant members of diverse atmospheric H2-oxidizing communities detected in temperate soils

    Undergraduates ramp up research during pandemic diaspora